Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012 (2012), Article ID 973946, 12 pages
http://dx.doi.org/10.1155/2012/973946
Review Article

Treatment of Neuroendocrine Tumor Liver Metastases

Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA

Received 19 July 2012; Accepted 27 October 2012

Academic Editor: Matthias Bahr

Copyright © 2012 Mark A. Lewis and Timothy J. Hobday. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Rindi, T. D'Adda, E. Froio, G. Fellegara, and C. Bordi, “Prognostic factors in gastrointestinal endocrine tumors,” Endocrine Pathology, vol. 18, no. 3, pp. 145–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Veenendaal, I. H. M. Borel Rinkes, C. J. M. Lips, and R. van Hillegersberg, “Liver metastases of neuroendocrine tumours; early reduction of tumour load to improve life expectancy,” World Journal of Surgical Oncology, vol. 4, p. 35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Mayo, M. C. De Jong, C. Pulitano et al., “Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis,” Annals of Surgical Oncology, vol. 17, no. 12, pp. 3129–3136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. John and B. R. Davidson, “Treatment options for unresectable neuroendocrine liver metastases,” Expert Review of Gastroenterology & Hepatology, vol. 6, no. 3, pp. 357–369, 2012. View at Google Scholar
  5. M. Mignon, “Natural history of neuroendocrine enteropancreatic tumors,” Digestion, vol. 62, supplement 1, pp. 51–58, 2000. View at Google Scholar · View at Scopus
  6. T. E. Clancy, T. P. Sengupta, J. Paulus, F. Ahmed, M. S. Duh, and M. H. Kulke, “Alkaline phosphatase predicts survival in patients with metastatic neuroendocrine tumors,” Digestive Diseases and Sciences, vol. 51, no. 5, pp. 877–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. D. Chu, H. C. Hill, H. O. Douglass Jr et al., “Predictive factors associated with long-term survival in patients with neuroendocrine tumors of the pancreas,” Annals of Surgical Oncology, vol. 9, no. 9, pp. 855–862, 2002. View at Google Scholar · View at Scopus
  8. E. W. M. McDermott, B. Guduric, and M. F. Brennan, “Prognostic variables in patients with gastrointestinal carcinoid tumours,” British Journal of Surgery, vol. 81, no. 7, pp. 1007–1009, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. E. T. Janson, L. Holmberg, M. Stridsberg et al., “Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center,” Annals of Oncology, vol. 8, no. 7, pp. 685–690, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. N. B. Jones, M. H. Shah, and M. Bloomston, “Liver-directed therapies in patients with advanced neuroendocrine tumors,” Journal of the National Comprehensive Cancer Network, vol. 10, no. 6, pp. 765–774, 2012. View at Google Scholar
  11. K. A. Yao, M. S. Talamonti, A. Nemcek et al., “Indications and results of liver resection and hepatic chemoembolization for metastatic gastrointestinal neuroendocrine tumors,” Surgery, vol. 130, no. 4, pp. 677–685, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Madoff, S. Gupta, K. Ahrar, R. Murthy, and J. C. Yao, “Update on the management of neuroendocrine hepatic metastases,” Journal of Vascular and Interventional Radiology, vol. 17, no. 8, pp. 1235–1250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Soreide, T. Berstad, A. Bakka et al., “Surgical treatment as a principle in patients with advanced abdominal carcinoid tumors,” Surgery, vol. 111, no. 1, pp. 48–54, 1992. View at Google Scholar · View at Scopus
  14. S. C. Mayo, M. C. de Jong, M. Bloomston et al., “Surgery versus intra-arterial therapy for neuroendocrine liver metastasis: a multicenter international analysis,” Annals of Surgical Oncology, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Saxena, T. C. Chua, A. Sarkar et al., “Progression and survival results after radical hepatic metastasectomy of indolent advanced neuroendocrine neoplasms (NENs) supports an aggressive surgical approach,” Surgery, vol. 149, no. 2, pp. 209–220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Karabulut, H. Y. Akyildiz, C. Lance et al., “Multimodality treatment of neuroendocrine liver metastases,” Surgery, vol. 150, no. 2, pp. 316–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. S. Glazer, J. F. Tseng, W. Al-Refaie et al., “Long-term survival after surgical management of neuroendocrine hepatic metastases,” HPB Journal, vol. 12, no. 6, pp. 427–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Fischer, J. Kleeff, I. Esposito et al., “Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas,” British Journal of Surgery, vol. 95, no. 5, pp. 627–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Osborne, E. E. Zervos, J. Strosberg et al., “Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors,” Annals of Surgical Oncology, vol. 13, no. 4, pp. 572–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Sarmiento, G. Heywood, J. Rubin, D. M. Ilstrup, D. M. Nagorney, and F. G. Que, “Surgical treatment of neuroendocrine metastases to the liver: a plea for resection to increase survival,” Journal of the American College of Surgeons, vol. 197, no. 1, pp. 29–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Elias, P. Lasser, M. Ducreux et al., “Liver resection (and associated extrahepatic resections) for metastatic well-differentiated endocrine tumors: a 15-year single center prospective study,” Surgery, vol. 133, no. 4, pp. 375–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Chen, A. Pruitt, T. L. Nicol, S. Gorgulu, and M. A. Choti, “Complete hepatic resection of metastases from leiomyosarcoma prolongs survival,” Journal of Gastrointestinal Surgery, vol. 2, no. 2, pp. 151–155, 1998. View at Google Scholar · View at Scopus
  23. H. Y. Akyildiz, J. Mitchell, M. Milas, A. Siperstein, and E. Berber, “Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up,” Surgery, vol. 148, no. 6, pp. 1288–1293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. G. Martin, C. R. Scoggins, and K. M. McMasters, “Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience,” Annals of Surgical Oncology, vol. 17, no. 1, pp. 171–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Mazzaglia, E. Berber, M. Milas, and A. E. Siperstein, “Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival,” Surgery, vol. 142, no. 1, pp. 10–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. R. Gillams and W. R. Lees, “Radiofrequency ablation of colorectal liver metastases,” Abdominal Imaging, vol. 30, no. 4, pp. 419–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. K. Seifert, P. J. Cozzi, and D. L. Morris, “Cryotherapy for neuroendocrine liver metastases,” Seminars in Surgical Oncology, vol. 14, no. 2, pp. 175–183, 1998. View at Publisher · View at Google Scholar
  28. R. S. Shapiro, M. Shafir, M. Sung, R. Warner, and N. Glajchen, “Cryotherapy of metastatic carcinoid tumors,” Abdominal Imaging, vol. 23, no. 3, pp. 314–317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Paprottka, R. T. Hoffmann, A. Haug et al., “Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using Yttrium-90 microspheres,” CardioVascular and Interventional Radiology, vol. 35, no. 2, pp. 334–342, 2011. View at Google Scholar
  30. A. S. Kennedy, W. A. Dezarn, P. McNeillie et al., “Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients,” American Journal of Clinical Oncology, vol. 31, no. 3, pp. 271–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Strosberg, J. Choi, A. B. Cantor, and L. K. Kvols, “Selective hepatic artery embolization for treatment of patients with metastatic carcinoid and pancreatic endocrine tumors,” Cancer Control, vol. 13, no. 1, pp. 72–78, 2006. View at Google Scholar · View at Scopus
  32. S. Gupta, M. M. Johnson, R. Murthy et al., “Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival,” Cancer, vol. 104, no. 8, pp. 1590–1602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. X. D. Dong and B. I. Carr, “Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients,” Medical Oncology, vol. 28, supplement 1, pp. S286–S290, 2011. View at Google Scholar
  34. R. Gedaly, M. F. Daily, D. Davenport et al., “Liver transplantation for the treatment of liver metastases from neuroendocrine tumors: an analysis of the UNOS database,” Archives of Surgery, vol. 146, no. 8, pp. 953–958, 2011. View at Publisher · View at Google Scholar
  35. Z. Mathe, E. Tagkalos, A. Paul et al., “Liver transplantation for hepatic metastases of neuroendocrine pancreatic tumors: a survival-based analysis,” Transplantation, vol. 91, no. 5, pp. 575–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. P. Le Treut, E. Grégoire, J. Belghiti et al., “Predictors of long-term survival after liver transplantation for metastatic endocrine tumors: an 85-case French multicentric report,” American Journal of Transplantation, vol. 8, no. 6, pp. 1205–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Rosenau, M. J. Bahr, R. Von Wasielewski et al., “Ki67, e-cadherin, and p53 as prognostic indicators of long-term outcome after liver transplantation for metastatic neuroendocrine tumors,” Transplantation, vol. 73, no. 3, pp. 386–394, 2002. View at Google Scholar · View at Scopus
  38. A. Saxena, T. C. Chua, F. Chu, A. Al-Zahrani, and D. L. Morris, “Optimizing the surgical effort in patients with advanced neuroendocrine neoplasm hepatic metastases: a critical analysis of 40 patients treated by hepatic resection and cryoablation,” American Journal of Clinical Oncology, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Rinke, H. H. Müller, C. Schade-Brittinger et al., “Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group,” Journal of Clinical Oncology, vol. 27, no. 28, pp. 4656–4663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Hodul, J. R. Strosberg, and L. K. Kvols, “Aggressive surgical resection in the management of pancreatic neuroendocrine tumors: when is it indicated?” Cancer Control, vol. 15, no. 4, pp. 314–321, 2008. View at Google Scholar · View at Scopus
  41. S. C. Mayo and T. M. Pawlik, “Thermal ablative therapies for secondary hepatic malignancies,” Cancer Journal, vol. 16, no. 2, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Gillams, A. Cassoni, G. Conway, and W. Lees, “Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience,” Abdominal Imaging, vol. 30, no. 4, pp. 435–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. L. Ong, G. Gravante, M. S. Metcalfe, A. D. Strickland, A. R. Dennison, and D. M. Lloyd, “Efficacy and safety of microwave ablation for primary and secondary liver malignancies: a systematic review,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 6, pp. 599–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Mayo and T. M. Pawlik, “Thermal ablative therapies for secondary hepatic malignancies,” Cancer Journal, vol. 16, no. 2, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. A. Gage and J. Baust, “Mechanisms of tissue injury in cryosurgery,” Cryobiology, vol. 37, no. 3, pp. 171–186, 1998. View at Google Scholar · View at Scopus
  46. A. J. Bilchik, T. Sarantou, L. J. Foshag, A. E. Giuliano, and K. P. Ramming, “Cryosurgical palliation of metastatic neuroendocrine tumors resistant to conventional therapy,” Surgery, vol. 122, no. 6, pp. 1040–1048, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. C. Jansen, R. van Hillegersberg, I. G. Schoots et al., “Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model,” Surgery, vol. 147, no. 5, pp. 686–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. K. Seifert and D. L. Morris, “World survey on the complications of hepatic and prostate cryotherapy,” World Journal of Surgery, vol. 23, no. 2, pp. 109–114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. A. T. Ruutiainen, M. C. Soulen, C. M. Tuite et al., “Chemoembolization and bland embolization of neuroendocrine tumor metastases to the liver,” Journal of Vascular and Interventional Radiology, vol. 18, no. 7, pp. 847–855, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. C. Pitt, J. Knuth, J. M. Keily et al., “Hepatic neuroendocrine metastases: chemo- or bland embolization?” Journal of Gastrointestinal Surgery, vol. 12, no. 11, pp. 1951–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Sakamoto, S. Iwanaga, K. Nagaoki et al., “Intrahepatic biloma formation (bile duct necrosis) after transcatheter arterial chemoembolization,” American Journal of Roentgenology, vol. 181, no. 1, pp. 79–87, 2003. View at Google Scholar · View at Scopus
  52. N. Bhagat, D. K. Reyes, M. Lin et al., “Phase IIstudy of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury,” Cardiovascular and Interventional Radiology. In press.
  53. E. Lee, H. L. Pachter, and U. Sarpel, “Hepatic arterial embolization for the treatment of metastatic neuroendocrine tumors,” International Journal of Hepatology, vol. 2012, Article ID 471203, 8 pages, 2012. View at Publisher · View at Google Scholar
  54. A. S. Ho, J. Picus, M. D. Darcy et al., “Long-term outcome after chemoembolization and embolization of hepatic metastatic lesions from neuroendocrine tumors,” American Journal of Roentgenology, vol. 188, no. 5, pp. 1201–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Sowa-Staszczak, R. Chrzan, D. Pach et al., “Are RECIST criteria sufficient to assess response to therapy in neuroendocrine tumors?” Clinical Imaging, vol. 36, no. 4, pp. 360–364, 2012. View at Publisher · View at Google Scholar
  56. R. Murthy, P. Kamat, R. Nunez et al., “Yttrium-90 microsphere radioembolotherapy of hepatic metastatic neuroendocrine carcinomas after hepatic arterial embolization,” Journal of Vascular and Interventional Radiology, vol. 19, no. 1, pp. 145–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Eadens and A. Grothey, “Curable metastatic colorectal cancer,” Current Oncology Reports, vol. 13, no. 3, pp. 168–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Kalinowski, M. Dressler, A. König et al., “Selective internal radiotherapy with yttrium-90 microspheres for hepatic metastatic neuroendocrine tumors: a prospective single center study,” Digestion, vol. 79, no. 3, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Vyleta and D. Coldwell, “Radioembolization in the treatment of neuroendocrine tumor metastases to the liver,” International Journal of Hepatology, vol. 2011, Article ID 785315, 5 pages, 2011. View at Publisher · View at Google Scholar
  60. B. Gray, G. Van Hazel, M. Hope et al., “Randomised trial of SIR-Spheres® plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer,” Annals of Oncology, vol. 12, no. 12, pp. 1711–1720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. B. I. Carr, “Hepatic arterial 90Yttrium glass microspheres (therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients,” Liver Transplantation, vol. 10, supplement 1, no. 2, pp. S107–S110, 2004. View at Google Scholar · View at Scopus
  62. R. Murthy, R. Nunez, J. Szklaruk et al., “Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications,” Radiographics, vol. 25, supplement 1, pp. S41–S55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Naymagon, R. R. P. Warner, K. Patel et al., “Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature,” Digestive Diseases and Sciences, vol. 55, no. 9, pp. 2450–2458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. J. Kwekkeboom, B. L. Kam, M. Van Essen et al., “Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors,” Endocrine-Related Cancer, vol. 17, no. 1, pp. R53–R73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Valkema, M. De Jong, W. H. Bakker et al., “Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: the Rotterdam experience,” Seminars in Nuclear Medicine, vol. 32, no. 2, pp. 110–122, 2002. View at Google Scholar · View at Scopus
  66. L. B. Anthony, E. A. Woltering, G. D. Espenan, M. D. Cronin, T. J. Maloney, and K. E. McCarthy, “Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies,” Seminars in Nuclear Medicine, vol. 32, no. 2, pp. 123–132, 2002. View at Google Scholar · View at Scopus
  67. D. J. Kwekkeboom, W. W. De Herder, B. L. Kam et al., “Treatment with the radiolabeled somatostatin analog [177Lu- DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival,” Journal of Clinical Oncology, vol. 26, no. 13, pp. 2124–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Valkema, S. Pauwels, L. K. Kvols et al., “Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors,” Seminars in Nuclear Medicine, vol. 36, no. 2, pp. 147–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Pach, A. Sowa-Staszczak, J. Kunikowska et al., “Repeated cycles of peptide receptor radionuclide therapy (PRRT)—results and side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE or 90Y/177Lu-DOTA TATE therapy in patients with disseminated NET,” Radiotherapy and Oncology, vol. 102, no. 1, pp. 45–50, 2012. View at Publisher · View at Google Scholar
  70. M. Theodoropoulou, J. Zhang, S. Laupheimer et al., “Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression,” Cancer Research, vol. 66, no. 3, pp. 1576–1582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Florio, “Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors,” Frontiers in Bioscience, vol. 13, no. 3, pp. 822–840, 2008. View at Google Scholar · View at Scopus
  72. C. G. Moertel, L. K. Kvols, M. J. O'Connell, and J. Rubin, “Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms,” Cancer, vol. 68, no. 2, pp. 227–232, 1991. View at Publisher · View at Google Scholar
  73. M. A. Kouvaraki, J. A. Ajani, P. Hoff et al., “Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas,” Journal of Clinical Oncology, vol. 22, no. 23, pp. 4710–4719, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Bajetta, L. Catena, G. Procopio et al., “Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours?” Cancer Chemotherapy and Pharmacology, vol. 59, no. 5, pp. 637–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. R. Strosberg, R. L. Fine, J. Choi et al., “First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas,” Cancer, vol. 117, no. 2, pp. 268–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Welin, H. Sorbye, S. Sebjornsen, S. Knappskog, C. Busch, and K. Öberg, “Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy,” Cancer, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Rubbia-Brandt, S. Tauzin, C. Brezault et al., “Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans,” Molecular Cancer Therapeutics, vol. 10, no. 4, pp. 687–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Folkman, “Tumor angiogenesis: therapeutic implications.,” New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Google Scholar · View at Scopus
  79. A. Couvelard, D. O'Toole, H. Turley et al., “Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression,” British Journal of Cancer, vol. 92, no. 1, pp. 94–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. D. E. Hansel, A. Rahman, J. Hermans et al., “Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression,” Modern Pathology, vol. 16, no. 7, pp. 652–659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. M. L. Fjällskog, O. Hessman, B. Eriksson, and E. T. Janson, “Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas,” Acta Oncologica, vol. 46, no. 6, pp. 741–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Faivre, G. Demetri, W. Sargent, and E. Raymond, “Molecular basis for sunitinib efficacy and future clinical development,” Nature Reviews Drug Discovery, vol. 6, no. 9, pp. 734–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Faivre, C. Delbaldo, K. Vera et al., “Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer,” Journal of Clinical Oncology, vol. 24, no. 1, pp. 25–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. H. Kulke, H. J. Lenz, N. J. Meropol et al., “Activity of sunitinib in patients with advanced neuroendocrine tumors,” Journal of Clinical Oncology, vol. 26, no. 20, pp. 3403–3410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Raymond, L. Dahan, J. L. Raoul et al., “Sunitinib malate for the treatment of pancreatic neuroendocrine tumors,” New England Journal of Medicine, vol. 364, no. 6, pp. 501–513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. R. Strosberg, J. M. Weber, J. Choi et al., “A phase II clinical trial of sunitinib following hepatic transarterial embolization for metastatic neuroendocrine tumors,” Annals of Oncology, vol. 23, no. 9, pp. 2335–2341, 2012. View at Publisher · View at Google Scholar
  87. J. Capdevila, R. Salazar, I. Halperín, A. Abad, and J. C. Yao, “Innovations therapy: mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors,” Cancer and Metastasis Reviews, vol. 30, supplement 1, pp. S27–S34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Moreno, A. Akcakanat, M. F. Munsell, A. Soni, J. C. Yao, and F. Meric-Bernstam, “Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors,” Endocrine-Related Cancer, vol. 15, no. 1, pp. 257–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Missiaglia, I. Dalai, S. Barbi et al., “Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway,” Journal of Clinical Oncology, vol. 28, no. 2, pp. 245–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. C. Yao, M. H. Shah, T. Ito et al., “Everolimus for advanced pancreatic neuroendocrine tumors,” New England Journal of Medicine, vol. 364, no. 6, pp. 514–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. M. E. Pavel, J. D. Hainsworth, E. Baudin et al., “Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study,” The Lancet, vol. 378, no. 9808, pp. 2005–2012, 2011. View at Publisher · View at Google Scholar