Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2013, Article ID 341636, 11 pages
http://dx.doi.org/10.1155/2013/341636
Review Article

Targeting the HGF-cMET Axis in Hepatocellular Carcinoma

1Division of Hematology-Oncology, University of Illinois at Chicago, 840 South Wood Street, Suite 820-E, MC 713, Chicago, IL 60612, USA
2Hematology/Oncology Fellowship Program, Division of Hematology-Oncology, Vanderbilt Ingram Cancer Center, 777 Preston Research Building, Nashville, TN 37232-6307, USA

Received 28 November 2012; Accepted 11 March 2013

Academic Editor: Pierluigi Toniutto

Copyright © 2013 Neeta K. Venepalli and Laura Goff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Agency for Research on Cancer, “Cancer incidence and mortality worldwide in 2008 (GLOBOCAN),” http://globocan.iarc.fr/.
  2. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Chenivesse, D. Franco, and C. Brechot, “MDR1 (multidrug resistance) gene expression in human primary liver cancer and cirrhosis,” Journal of Hepatology, vol. 18, no. 2, pp. 168–172, 1993. View at Google Scholar · View at Scopus
  4. L. X. Qin, Z. Y. Tang, Z. C. Ma et al., “P53 immunohistochemical scoring: an independent prognostic marker for patients after hepatocellular carcinoma resection,” World Journal of Gastroenterology, vol. 8, no. 3, pp. 459–463, 2002. View at Google Scholar · View at Scopus
  5. A. M. Hui, M. Sakamoto, Y. Kanai et al., “Inactivation of p16(INK4) in hepatocellular carcinoma,” Hepatology, vol. 24, no. 3, pp. 575–579, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Nakanishi, M. Sakamoto, S. Yamasaki, S. Todo, and S. Hirohashi, “Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma,” Cancer, vol. 103, no. 2, pp. 307–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Whittaker, R. Marais, and A. X. Zhu, “The role of signaling pathways in the development and treatment of hepatocellular carcinoma,” Oncogene, vol. 29, no. 36, pp. 4989–5005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Nakamura, K. Sakai, T. Nakamura, and K. Matsumoto, “Hepatocyte growth factor twenty years on: much more than a growth factor,” Journal of Gastroenterology and Hepatology, vol. 26, supplement 1, pp. 188–202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Stoker, E. Gherardi, M. Perryman, and J. Gray, “Scatter factor is a fibroblast-derived modulator of epithelial cell mobility,” Nature, vol. 326, no. 6119, pp. 239–242, 1987. View at Google Scholar · View at Scopus
  10. R. Montesano, K. Matsumoto, T. Nakamura, and L. Orci, “Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor,” Cell, vol. 67, no. 5, pp. 901–908, 1991. View at Google Scholar · View at Scopus
  11. M. A. Nalesnik and G. K. Michalopoulos, “Growth factor pathways in development and progression of hepatocellular carcinoma,” Frontiers in Bioscience, vol. S4, no. 4, pp. 1487–1515, 2012. View at Google Scholar
  12. J. Broten, G. Michalopoulos, B. Petersen, and J. Cruise, “Adrenergic stimulation of hepatocyte growth factor expression,” Biochemical and Biophysical Research Communications, vol. 262, no. 1, pp. 76–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. L. J. Appleman, “MET signaling pathway: a rational target for cancer therapy,” Journal of Clinical Oncology, vol. 29, pp. 4837–4838, 2011. View at Google Scholar
  14. T. Shimomura, J. Kondo, M. Ochiai et al., “Activation of the zymogen of hepatocyte growth factor activator by thrombin,” Journal of Biological Chemistry, vol. 268, no. 30, pp. 22927–22932, 1993. View at Google Scholar · View at Scopus
  15. D. P. Bottaro, J. S. Rubin, D. L. Faletto et al., “Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product,” Science, vol. 251, no. 4995, pp. 802–804, 1991. View at Google Scholar
  16. P. Peschard and M. Park, “From Tpr-Met to Met, tumorigenesis and tubes,” Oncogene, vol. 26, no. 9, pp. 1276–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. W. D. Tolbert, J. Daugherty-Holtrop, E. Gherardi, G. Vande Woude, and H. E. Xu, “Structural basis for agonism and antagonism of hepatocyte growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13264–13269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Gherardi, M. E. Youles, R. N. Miguel et al., “Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12039–12044, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Matsumoto, H. Kataoka, K. Date, and T. Nakamura, “Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses,” Journal of Biological Chemistry, vol. 273, no. 36, pp. 22913–22920, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. W. D. Tolbert, J. Daugherty, C. Gao et al., “A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14592–14597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Cecchi, D. C. Rabe, and D. P. Bottaro, “Targeting the HGF/Met signaling pathway in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 16, pp. 553–572, 2012. View at Google Scholar
  22. P. M. Comoglio and C. Boccaccio, “Scatter factors and invasive growth,” Seminars in Cancer Biology, vol. 11, no. 2, pp. 153–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Corso, P. M. Comoglio, and S. Giordano, “Cancer therapy: can the challenge be MET?” Trends in Molecular Medicine, vol. 11, no. 6, pp. 284–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. W. Zhang and G. F. Vande Woude, “HGF/SF-Met signaling in the control of branching morphogenesis and invasion,” Journal of Cellular Biochemistry, vol. 88, no. 2, pp. 408–417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. R. Blumenschein, G. B. Mills, and A. M. Gonzalez-Angulo, “Targeting the hepatocyte growth factor-cMET axis in cancer therapy,” Journal of Clinical Oncology, vol. 30, no. 26, pp. 3287–3296, 2012. View at Publisher · View at Google Scholar
  26. C. G. Huh, V. M. Factor, A. Sánchez, K. Uchida, E. A. Conner, and S. S. Thorgeirsson, “Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4477–4482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Nakamura, S. Mizuno, K. Matsumoto, Y. Sawa, H. Matsuda, and T. Nakamura, “Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1511–1519, 2000. View at Google Scholar · View at Scopus
  28. J. Chmielowiec, M. Borowiak, M. Morkel et al., “c-Met is essential for wound healing in the skin,” Journal of Cell Biology, vol. 177, no. 1, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-H. Baek, C. Birchmeier, M. Zenke, and T. Hieronymus, “The HGF receptor/met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity,” Journal of Immunology, vol. 189, no. 4, pp. 1699–1707, 2012. View at Publisher · View at Google Scholar
  30. Y. Uehara, O. Minowa, C. Mori et al., “Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor,” Nature, vol. 373, no. 6516, pp. 702–705, 1995. View at Google Scholar · View at Scopus
  31. K. I. Kosai, K. Matsumoto, S. Nagata, Y. Tsujimoto, and T. Nakamura, “Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocyte growth factor,” Biochemical and Biophysical Research Communications, vol. 244, no. 3, pp. 683–690, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Borowiak, A. N. Garratt, T. Wüstefeld, M. Strehle, C. Trautwein, and C. Birchmeier, “Met provides essential signals for liver regeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10608–10613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Tavian, G. De Petro, A. Benetti, N. Portolani, S. M. Giulini, and S. Barlati, “u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma,” International Journal of Cancer, vol. 87, no. 5, pp. 644–649, 2000. View at Publisher · View at Google Scholar
  34. C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. Vande Woude, “Met, metastasis, motility and more,” Nature Reviews Molecular Cell Biology, vol. 4, no. 12, pp. 915–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Lengyel, D. Prechtel, J. H. Resau et al., “c-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu,” International Journal of Cancer, vol. 113, no. 4, pp. 678–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. A. Smolen, R. Sordella, B. Muir et al., “Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2316–2321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Kiss, N. J. Wang, J. P. Xie, and S. S. Thorgeirsson, “Analysis of transforming growth factor (TGF)-α/epidermal growth factor receptor, hepatocyte growth factor/c-met, TGF-β receptor type II, and p53 expression in human hepatocellular carcinomas,” Clinical Cancer Research, vol. 3, no. 7, pp. 1059–1066, 1997. View at Google Scholar · View at Scopus
  38. L. Boix, J. L. Rosa, F. Ventura et al., “c-met mRNA overexpression in human hepatocellular carcinoma,” Hepatology, vol. 19, no. 1, pp. 88–91, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Osada, M. Kanematsu, H. Imai, and S. Goshima, “Clinical significance of Serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma,” Hepato-Gastroenterology, vol. 55, no. 82-83, pp. 544–549, 2008. View at Google Scholar · View at Scopus
  40. K. Suzuki, N. Hayashi, Y. Yamada et al., “Expression of the c-met protooncogene in human hepatocellular carcinoma,” Hepatology, vol. 20, no. 5, pp. 1231–1236, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Ueki, J. Fujimoto, T. Suzuki, H. Yamamoto, and E. Okamoto, “Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma,” Hepatology, vol. 25, no. 4, pp. 862–866, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. J. I. Okano, G. Shiota, and H. Kawasaki, “Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study,” Liver, vol. 19, no. 2, pp. 151–159, 1999. View at Google Scholar · View at Scopus
  43. M. Daveau, M. Scotte, A. François et al., “Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma,” Molecular Carcinogenesis, vol. 36, no. 3, pp. 130–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. F. S. Wu, S. S. Zheng, L. J. Wu et al., “Study on the prognostic value of hepatocyte growth factor and c-met for patients with hepatocellular carcinoma,” Chinese Journal of Surgery, vol. 44, no. 9, pp. 603–608, 2006. View at Google Scholar · View at Scopus
  45. A. W. Ke, G. M. Shi, J. Zhou et al., “Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma,” Hepatology, vol. 49, no. 2, pp. 491–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. L. Wang, P. Liang, B. W. Dong, X. L. Yu, and D. J. Yu, “Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: a retrospective study,” Journal of Gastrointestinal Surgery, vol. 12, no. 2, pp. 327–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Kaposi-Novak, J. S. Lee, L. Gòmez-Quiroz, C. Coulouarn, V. M. Factor, and S. S. Thorgeirsson, “Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1582–1595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. M. Llovet, C. E. A. Peña, C. D. Lathia, M. Shan, G. Meinhardt, and J. Bruix, “Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma,” Clinical Cancer Research, vol. 18, no. 8, pp. 2290–2300, 2012. View at Publisher · View at Google Scholar
  49. P. Vejchapipat, P. Tangkijvanich, A. Theamboonlers, V. Chongsrisawat, S. Chittmittrapap, and Y. Poovorawan, “Association between serum hepatocyte growth factor and survival in untreated hepatocellular carcinoma,” Journal of Gastroenterology, vol. 39, no. 12, pp. 1182–1188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Yamagamim, M. Moriyama, H. Matsumura et al., “Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases,” Cancer, vol. 95, no. 4, pp. 824–834, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Liu, J. He, C. Li et al., “Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations,” Journal of Proteome Research, vol. 9, no. 2, pp. 798–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Costantini, F. Capone, E. Guerriero, P. Maio, G. Colonna, and G. Castello, “Serum cytokine levels as putative prognostic markers in the progression of chronic HCV hepatitis to cirrhosis,” European Cytokine Network, vol. 21, no. 4, pp. 251–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Moinzadeh, K. Breuhahn, H. Stützer, and P. Schirmacher, “Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade—results of an explorative CGH meta-analysis,” British Journal of Cancer, vol. 92, no. 5, pp. 935–941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. W. S. Park, S. M. Dong, S. Y. Kim et al., “Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas,” Cancer Research, vol. 59, no. 2, pp. 307–310, 1999. View at Google Scholar · View at Scopus
  55. A. Guo, J. Villén, J. Kornhauser et al., “Signaling networks assembled by oncogenic EGFR and c-Met,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 692–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. K. K. Velpula, V. R. Dasari, S. Asuthkar, B. Gorantla, and A. J. Tsung, “EGFR and c-Met cross talk in glioblastoma and its regulation by human cord blood stem cells,” Translational Oncology, vol. 5, no. 5, pp. 379–392, 2012. View at Publisher · View at Google Scholar
  57. K. L. Mueller, L. A. Hunter, S. P. Ethier, and J. L. Boerner, “Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells,” Cancer Research, vol. 68, no. 9, pp. 3314–3322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Xin, S. Yang, G. Ingle et al., “Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo,” American Journal of Pathology, vol. 158, no. 3, pp. 1111–1120, 2001. View at Google Scholar · View at Scopus
  59. Y. W. Zhang, Y. Su, O. V. Volpert, and G. F. Vande Woude, “Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12718–12723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Yu and G. Merlino, “Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model,” Cancer Research, vol. 62, no. 10, pp. 2951–2956, 2002. View at Google Scholar · View at Scopus
  61. A. M. L. Chan, J. S. Rubin, D. P. Bottaro, D. W. Hirschfield, M. Chedid, and S. A. Aaronson, “Identification of a competitive HGF antagonist encoded by an alternative transcript,” Science, vol. 254, no. 5036, pp. 1382–1385, 1991. View at Google Scholar · View at Scopus
  62. Y. Kishi, K. Kuba, T. Nakamura et al., “Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models,” Cancer Science, vol. 100, no. 7, pp. 1351–1358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Suzuki, K. Sakai, J. Ueki et al., “Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma,” International Journal of Cancer, vol. 127, no. 8, pp. 1948–1957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Matsumoto and T. Nakamura, “NK4 gene therapy targeting HGF-MET and angiogenesis,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1943–1951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Mazzone, C. Basilico, S. Cavassa et al., “An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice,” Journal of Clinical Investigation, vol. 114, no. 10, pp. 1418–1432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. S. J. Stahl, P. T. Wingfield, J. D. Kaufman et al., “Functional and biophysical characterization of recombinant human hepatocyte growth factor isoforms produced in Escherichia coli,” Biochemical Journal, vol. 326, no. 3, pp. 763–772, 1997. View at Google Scholar · View at Scopus
  67. T. Otsuka, J. Jakubczak, W. Vieira et al., “Disassociation of Met-mediated biological responses in vivo: the natural hepatocyte growth factor/scatter factor splice variant NK2 antagonizes growth but facilitates metastasis,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 2055–2065, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Michieli, M. Mazzone, C. Basilico et al., “Targeting the tumor and its microenvironment by a dual-function decoy Met receptor,” Cancer Cell, vol. 6, no. 1, pp. 61–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Kong-Beltran, J. Stamos, and D. Wickramasinghe, “The Sema domain of Met is necessary for receptor dimerization and activation,” Cancer Cell, vol. 6, no. 1, pp. 75–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Gao, Y. Inagaki, P. Song, X. Qu, N. Kokudo, and W. Tang, “Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma,” Pharmacological Research, vol. 65, no. 1, pp. 23–30, 2012. View at Publisher · View at Google Scholar
  71. A. Chaudhuri, M.-H. Xie, B. Yang et al., “Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET,” Journal of Biological Chemistry, vol. 286, no. 37, pp. 32762–32774, 2011. View at Publisher · View at Google Scholar
  72. A. Bardelli, P. Longati, D. Gramaglia, M. C. Stella, and P. M. Comoglio, “Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential,” Oncogene, vol. 15, no. 25, pp. 3103–3111, 1997. View at Google Scholar · View at Scopus
  73. A. Giubellino, T. R. Burke, and D. P. Bottaro, “Grb2 signaling in cell motility and cancer,” Expert Opinion on Therapeutic Targets, vol. 12, no. 8, pp. 1021–1033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Giubellino, Y. Gao, S. Lee et al., “Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist,” Cancer Research, vol. 67, no. 13, pp. 6012–6016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Atabey, Y. Gao, Z. J. Yao et al., “Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 14308–14314, 2001. View at Google Scholar · View at Scopus
  76. D. Oh, S. Han, T. M. Kim et al., “A phase I, open-label, nonrandomized trial of OPB-31121, a STAT3 inhibitor, in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 28, supplement, abstract e13056, 2010. View at Google Scholar
  77. P. Zucali, A. Santoro, C. Rodriguez-Lope et al., “Final results from ARQ 197–114: a phase 1b safety trial evaluating ARQ 197 in cirrhotic patients (pts) with hepatocellular carcinoma (HCC),” Journal of Clinical Oncology, vol. 28, supplement 15, abstract 4137, p. 334s, 2010. View at Google Scholar
  78. L. Rimassa, C. Porta, I. Borbath et al., “Tivantinib (ARQ 197) versus placebo in patients (Pts) with hepatocellular carcinoma (HCC) who failed one systemic therapy: results of a randomized controlled phase II trial (RCT),” Journal of Clinical Oncology, vol. 30, supplement, abstract 4006, 2012. View at Google Scholar
  79. F. M. Yakes, J. Chen, J. Tan et al., “Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth,” Molecular Cancer Therapeutics, vol. 10, no. 12, pp. 2298–2308, 2011. View at Publisher · View at Google Scholar
  80. A. L. Cohn, R. K. Kelley, Y. Tasi-Shen et al., “Activity of cabozantinib (XL 184) in hepatocellular carcinoma patients (pts): results from a phase II randomized discontinuation trial (RDT),” .Journal of Clinical Oncology, vol. 30, supplement 4, abstract 261, 2012. View at Google Scholar
  81. V. Lu Kan, P. Chang Jeffrey, A. Parachoniak Christine et al., “VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex,” Cancer Cell, vol. 22, no. 1, pp. 21–35, 2012. View at Publisher · View at Google Scholar
  82. B. Sennino, T. Ishiguro-Oonuma, Y. Wei et al., “Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors,” Cancer Discovery, vol. 2, no. 3, pp. 270–287, 2012. View at Publisher · View at Google Scholar
  83. R. E. Martell, I. Puzanov, W. W. Ma et al., “Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with hepatocellular carcinoma (HCC) from a phase I study,” Journal of Clinical Oncology, vol. 30, supplement, abstract 4117, 2012. View at Google Scholar
  84. M. L. Peach, N. Tan, S. J. Choyke et al., “Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening,” Journal of Medicinal Chemistry, vol. 52, no. 4, pp. 943–951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. F. Bellon, P. Kaplan-Lefko, Y. Yang et al., “c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations,” Journal of Biological Chemistry, vol. 283, no. 5, pp. 2675–2683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Berthou, D. M. Aebersold, L. S. Schmidt et al., “The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants,” Oncogene, vol. 23, no. 31, pp. 5387–5393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. L. V. Sequist, J. Von Pawel, E. G. Garmey et al., “Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 29, no. 24, pp. 3307–3315, 2011. View at Publisher · View at Google Scholar
  88. S. Yamazaki, J. Skaptason, D. Romero et al., “Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models,” Drug Metabolism and Disposition, vol. 36, no. 7, pp. 1267–1274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Torti, F. Sassi, F. Galimi et al., “A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors,” International Journal of Cancer, vol. 130, no. 6, pp. 1357–1366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Kurzrock, S. I. Sherman, D. W. Ball et al., “Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer,” Journal of Clinical Oncology, vol. 29, no. 19, pp. 2660–2666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Srinivasan, T. K. Choueiri, U. Vaishampayan et al., “A phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients (ps) with papillary renal carcinma (PRC),” Journal of Clinical Oncology, vol. 26, supplement 15, abstract 5103, p. 275s, 2008. View at Google Scholar
  92. E. M. Kim, E. H. Park, S. J. Cheong et al., “In vivo imaging of mesenchymal-epithelial transition factor (c-Met) expression using an optical imaging system,” Bioconjugate Chemistry, vol. 20, no. 7, pp. 1299–1306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Wu, Z. Tang, W. Fan et al., “In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor,” Journal of Medicinal Chemistry, vol. 53, no. 1, pp. 139–146, 2010. View at Publisher · View at Google Scholar · View at Scopus