Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2013, Article ID 815105, 8 pages
http://dx.doi.org/10.1155/2013/815105
Review Article

Liver Injury Induced by Anticancer Chemotherapy and Radiation Therapy

1Department of Gastroenterology and Hepatology, Sheba Medical Center, 52621 Tel-Hashomer, Israel
2Department of Internal Medicine C, Kaplan Medical Center, The Hebrew University of Jerusalem, 76100 Rehovot, Israel

Received 5 November 2012; Accepted 3 May 2013

Academic Editor: Matthias Bahr

Copyright © 2013 Y. Maor and S. Malnick. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Wagner, M. A. Adson, and J. A. Van Heerden, “The natural history of hepatic metastases from colorectal cancer. A comparison with resective treatment,” Annals of Surgery, vol. 199, no. 5, pp. 502–508, 1984. View at Google Scholar · View at Scopus
  2. J. Figueras, J. Torras, C. Valls et al., “Surgical resection of colorectal liver metastases in patients with expanded indications: a single-center experience with 501 patients,” Diseases of the Colon and Rectum, vol. 50, no. 4, pp. 478–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Chen, C. H. Fang, L. S. Liang, L. H. Dai, and X. K. Wang, “A meta-analysis of chemotherapy regimen Fluorouracil/Leucovorin/Oxaliplatin Compared with Fluorouracil/Leucovorin in treating advanced colorectal cancer,” Surgical Oncology, vol. 19, no. 1, pp. 38–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. B. Saltz, S. Clarke, E. Diaz-Rubio et al., “Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 2013–2019, 2008. View at Google Scholar
  5. P.-A. Clavien, H. Petrowsky, M. L. DeOliveira, and R. Graf, “Strategies for safer liver surgery and partial liver transplantation,” The New England Journal of Medicine, vol. 356, no. 15, pp. 1545–1559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Adam, A. Laurent, D. Azoulay et al., “Two-stage hepatectomy: a planned strategy to treat irresectable liver tumors,” Annals of Surgery, vol. 232, no. 6, pp. 777–785, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Lehmann, A. Rickenbacher, A. Weber et al., “Chemotherapy before liver resection of clorectal metastases: friend or foe?” Annals of Surgery, vol. 254, no. 5, pp. 1–11, 2011. View at Google Scholar
  8. D. Zorzi, A. Laurent, T. M. Pawlik, G. Y. Lauwers, J.-N. Vauthey, and E. K. Abdalla, “Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases,” British Journal of Surgery, vol. 94, no. 3, pp. 274–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Morris-Stiff, Y.-M. Tan, and J. N. Vauthey, “Hepatic complications following preoperative chemotherapy with oxaliplatin or irinotecan for hepatic colorectal metastases,” European Journal of Surgical Oncology, vol. 34, no. 6, pp. 609–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Fong and D. J. Bentrem, “CASH (chemotherapy-associated steatohepatitis) costs,” Annals of Surgery, vol. 243, no. 1, pp. 8–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Robinson, C. H. Wilson, A. D. Burt et al., “Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis,” Annals of Surgical Oncology, vol. 19, no. 13, pp. 4287–4299, 2012. View at Publisher · View at Google Scholar
  12. S.-C. Lim, J. E. Choi, H. S. Kang, and H. Si, “Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma,” International Journal of Cancer, vol. 126, no. 7, pp. 1582–1595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Li, H. Lin, S. Yang, and A. M. Diehl, “Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system,” Gastroenterology, vol. 123, no. 4, pp. 1304–1310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. E. Anna Diehl, “Nonalcoholic steatosis and steatohepatitis IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines,” American Journal of Physiology, vol. 282, no. 1, pp. G1–G5, 2002. View at Google Scholar · View at Scopus
  15. R. Veteläinen, A. K. van Vliet, and T. M. van Gulik, “Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy,” Annals of Surgery, vol. 245, no. 1, pp. 44–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Veteläinen, A. Van Vliet, D. J. Gouma, and T. M. Van Gulik, “Steatosis as a risk factor in liver surgery,” Annals of Surgery, vol. 245, no. 1, pp. 20–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Belghiti, K. Hiramatsu, S. Benoist, P. P. Massault, A. Sauvanet, and O. Farges, “Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection,” Journal of the American College of Surgeons, vol. 191, no. 1, pp. 38–46, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Bilchik, G. Poston, S. A. Curley et al., “Neoadjuvant chemotherapy for metastatic colon cancer: a cautionary note,” Journal of Clinical Oncology, vol. 23, no. 36, pp. 9073–9078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Garcea and G. J. Maddern, “Liver failure after major hepatic resection,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 16, no. 2, pp. 145–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Kooby, Y. Fong, A. Suriawinata et al., “Impact of steatosis on perioperative outcome following hepatic resection,” Journal of Gastrointestinal Surgery, vol. 7, no. 8, pp. 1034–1044, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. L. McCormack, H. Petrowsky, W. Jochum, K. Furrer, and P.-A. Clavien, “Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: a matched case-control study,” Annals of Surgery, vol. 245, no. 6, pp. 923–930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. G. Moertel, T. R. Fleming, J. S. Macdonald, D. G. Haller, and J. A. Laurie, “Hepatic toxicity associated with fluorouracil plus levamisole adjuvant therapy,” Journal of Clinical Oncology, vol. 11, no. 12, pp. 2386–2390, 1993. View at Google Scholar · View at Scopus
  23. P. D. Peppercorn, R. H. Reznek, P. Wilson, M. L. Slevin, and R. K. Gupta, “Demonstration of hepatic steatosis by computerized tomography in patients receiving 5-fluorouracil-based therapy for advanced colorectal cancer,” British Journal of Cancer, vol. 77, no. 11, pp. 2008–2011, 1998. View at Google Scholar · View at Scopus
  24. P. Sorensen, A. L. Edal, E. L. Madsen et al., “Reversible hepatic steatosis in patients treated with interferon alfa-2a and 5-fluorouracil,” Cancer, vol. 75, no. 10, pp. 2592–2596, 1995. View at Google Scholar
  25. T. M. Pawlik, K. Olino, A. L. Gleisner, M. Torbenson, R. Schulick, and M. A. Choti, “Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome,” Journal of Gastrointestinal Surgery, vol. 11, no. 7, pp. 860–868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J.-N. Vauthey, T. M. Pawlik, D. Ribero et al., “Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases,” Journal of Clinical Oncology, vol. 24, no. 13, pp. 2065–2072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. U. V. Gentilucci, D. Santini, B. Vincenzi, E. Fiori, A. Picardi, and G. Tonini, “Chemotherapy-induced steatohepatitis in colorectal cancer patients,” Journal of Clinical Oncology, vol. 24, no. 34, p. 5467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sahajpal, C. M. Vollmer Jr., E. Dixon et al., “Chemotherapy for colorectal cancer prior to liver resection for colorectal cancer hepatic metastases does not adversely affect peri-operative outcomes,” Journal of Surgical Oncology, vol. 95, no. 1, pp. 22–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. F. G. Fernandez, J. Ritter, J. W. Goodwin, D. C. Linehan, W. G. Hawkins, and S. M. Strasberg, “Effect of steatohepatitis associated with irinotecan or oxaliplatin pretreatment on resectability of hepatic colorectal metastases,” Journal of the American College of Surgeons, vol. 200, no. 6, pp. 845–853, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. D. DeLeve, H. M. Shulman, and G. B. McDonald, “Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease),” Seminars in Liver Disease, vol. 22, no. 1, pp. 27–41, 2002. View at Google Scholar · View at Scopus
  31. C. Julie, M. Lutz, D. Aust et al., “Pathological analysis of hepatic injury after oxaliplatin-based neoadjuvant chemotherapy of colorectal cancer liver metastases: results of the EORTC Intergroup phase III study 40983,” Journal of Clinical Oncology, vol. 25, abstract 241, 2007. View at Google Scholar
  32. H. Nakano, E. Oussoultzoglou, E. Rosso et al., “Sinusoidal injury increases morbidity after major hepatectomy in patients with colorectal liver metastases receiving preoperative chemotherapy,” Annals of Surgery, vol. 247, no. 1, pp. 118–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Laurent, C. Nicco, C. Chéreau et al., “Controlling tumor growth by modulating endogenous production of reactive oxygen species,” Cancer Research, vol. 65, no. 3, pp. 948–956, 2005. View at Google Scholar · View at Scopus
  34. J. Alexandre, C. Nicco, C. Chéreau et al., “Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir,” Journal of the National Cancer Institute, vol. 98, no. 4, pp. 236–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. H. Zeng, J. F. Lu, and K. Wang, “The effect of cisplatin and transplatin on the conformation and association of F-actin,” Cell Biology International, vol. 19, no. 6, pp. 491–497, 1995. View at Google Scholar
  36. M. Karoui, C. Penna, M. Amin-Hashem et al., “Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases,” Annals of Surgery, vol. 243, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Aloia, M. Sebagh, M. Plasse et al., “Liver histology and surgical outcomes after preoperative chemotherapy with fluorouracil plus oxaliplatin in colorectal cancer liver metastases,” Journal of Clinical Oncology, vol. 24, no. 31, pp. 4983–4990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Kooby, J. Stockman, L. Ben-Porat et al., “Influence of transfusions on perioperative and long-term outcome in patients following hepatic resection for colorectal metastases,” Annals of Surgery, vol. 237, no. 6, pp. 860–870, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Van Der Bol, R. H. Mathijssen, J. Verweij et al., “CYP3A phenotype-based individualized dosing of irinotecan to reduce interindividual variability in pharmacokinetics and toxicity: result from a randomized trial,” Journal of Clinical Oncology, vol. 26, abstract 2506, 2008. View at Google Scholar
  40. L. Iyer, S. Das, L. Janisch et al., “UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity,” Pharmacogenomics Journal, vol. 2, no. 1, pp. 43–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. M. Kweekel, H. Gelderblom, and H.-J. Guchelaar, “Pharmacology of oxaliplatin and the use of pharmacogenomics to individualize therapy,” Cancer Treatment Reviews, vol. 31, no. 2, pp. 90–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Kodama, C. S. Ng, T. T. Wu et al., “Comparison of CT methods for determining the fat content of the liver,” American Journal of Roentgenology, vol. 188, no. 5, pp. 1307–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. S. Cho, S. Curran, L. H. Schwartz et al., “Preoperative radiographic assessment of hepatic steatosis with histologic correlation,” Journal of the American College of Surgeons, vol. 206, no. 3, pp. 480–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Kopetz and J.-N. Vauthey, “Perioperative chemotherapy for resectable hepatic metastases,” The Lancet, vol. 371, no. 9617, pp. 963–965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. F. K. S. Welsh, H. S. Tilney, P. P. Tekkis, T. G. John, and M. Rees, “Safe liver resection following chemotherapy for colorectal metastases is a matter of timing,” British Journal of Cancer, vol. 96, no. 7, pp. 1037–1042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Ribero, E. K. Abdalla, D. C. Madoff, M. Donadon, E. M. Loyer, and J.-N. Vauthey, “Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome,” British Journal of Surgery, vol. 94, no. 11, pp. 1386–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Morris-Stiff, Y.-M. Tan, and J. N. Vauthey, “Hepatic complications following preoperative chemotherapy with oxaliplatin or irinotecan for hepatic colorectal metastases,” European Journal of Surgical Oncology, vol. 34, no. 6, pp. 609–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Rubbia-Brandt, G. Y. Lauwers, H. Wang et al., “Sinusoidal obstruction syndrome and nodular regenerative hyperplasia are frequent oxaliplatin-associated liver lesions and partially prevented by bevacizumab in patients with hepatic colorectal metastasis,” Histopathology, vol. 56, no. 4, pp. 430–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. E. M. van der Pool, H. A. Marsman, J. Verheij et al., “Effect of bevacizumab added preoperatively to oxaliplatin on liver injury and complications after resection of colorectal liver metastases,” Journal of Surgical Oncology, vol. 106, no. 7, pp. 892–897, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. D. S. Pratt, T. A. Knox, and J. Erban, “Tamoxifen-induced steatohepatitis,” Annals of Internal Medicine, vol. 123, no. 3, p. 236, 1995. View at Google Scholar · View at Scopus
  51. A. Grieco, A. Forgione, L. Miele et al., “Fatty liver and drugs,” European Review for Medical and Pharmacological Sciences, vol. 9, no. 5, pp. 261–263, 2005. View at Google Scholar · View at Scopus
  52. S. Bruno, P. Maisonneuve, P. Castellana et al., “Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial,” British Medical Journal, vol. 330, no. 7497, pp. 932–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Saphner, S. Triest-Robertson, H. Li, and P. Holzman, “The association of nonalcoholic steatohepatitis and tamoxifen in patients with breast cancer,” Cancer, vol. 115, no. 14, pp. 3189–3195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. H. Ahmed and C. D. Byrne, “Non-alcoholic steatoheptatitis,” in Metabolic Syndrome, C. D. Byrne and S. Wild, Eds., pp. 279–303, John Wiley & Sons, London, UK, 2005. View at Google Scholar
  55. M. H. Ahmed and K. A. Osman, “Tamoxifen induced-non-alcoholic steatohepatitis (NASH): has the time come for the oncologist to be diabetologist,” Breast Cancer Research and Treatment, vol. 97, no. 2, pp. 223–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Pessayre, B. Fromenty, and A. Mansouri, “Mitochondrial injury in steatohepatitis,” European Journal of Gastroenterology and Hepatology, vol. 16, no. 11, pp. 1095–1105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Ohnishi, Y. Ogawa, T. Saibara et al., “CYP17 polymorphism and tamoxifen-induced hepatic steatosis,” Hepatology Research, vol. 33, no. 2, pp. 178–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Günel, U. Coşkun, F. B. Toruner et al., “Serum leptin levels are associated with tamoxifen-induced hepatic steatosis,” Current Medical Research and Opinion, vol. 19, no. 1, pp. 47–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Inno, M. Basso, F. M. Vecchio et al., “Anastrozole-related acute hepatitis with autoimmune features: a case report,” BMC Gastroenterology, vol. 31, no. 11, p. 32, 2011. View at Google Scholar
  60. L. de la Cruz, J. Romero-Vazquez, M. Jiménez-Sáenz, J. R. A. Padron, and J. M. Herrerias-Gutierrez, “Severe acute hepatitis in a patient treated with anastrozole,” The Lancet, vol. 369, no. 9555, pp. 23–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. N. U. Lin, L. A. Carey, M. C. Liu et al., “Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 1993–1999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Peroukides, T. Makatsoris, A. Koutras et al., “Lapatinib-induced hepatitis: a case report,” World Journal of Gastroenterology, vol. 17, no. 18, pp. 2349–2352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. C. F. Spraggs, L. R. Budde, L. P. Briley et al., “HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer,” Journal of Clinical Oncology, vol. 29, no. 6, pp. 667–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. S. Weber, K. C. Kähler, and A. Hauschild, “Management of immune-related adverse events and kinetics of response with ipilimumab,” Journal of Clinical Oncology, vol. 30, no. 21, pp. 2691–2997, 2012. View at Google Scholar
  65. C. Robert, L. Thomas, I. Bondarenko et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2517–2526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. D. Wolchok, B. Neyns, G. Linette et al., “Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study,” The Lancet Oncology, vol. 11, no. 2, pp. 155–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Guha and B. D. Kavanagh, “Hepatic radiation toxicity: avoidance and amelioration,” Seminars in Radiation Oncology, vol. 21, no. 4, pp. 256–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. G. B. Reed Jr. and A. J. Cox Jr., “The human liver after radiation injury. A form of veno-occlusive disease,” American Journal of Pathology, vol. 48, no. 4, pp. 597–611, 1966. View at Google Scholar · View at Scopus
  69. S.-X. Liang, X.-D. Zhu, Z.-Y. Xu et al., “Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: the risk factors and hepatic radiation tolerance,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 2, pp. 426–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. Z.-Y. Xu, S.-X. Liang, J. Zhu et al., “Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 1, pp. 189–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. C.-H. Cheng, J.-K. Wu, C.-M. Huang et al., “Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 1, pp. 156–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. T. S. Lawrence, “Hepatic toxicity resulting from cancer treatment,” International Journal of Radiation Oncology Biology Physics, vol. 31, no. 5, pp. 1237–1248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Sangro, M. Iñarrairaegui, and J. I. Bilbao, “Radioembolization for hepatocellular carcinoma,” Journal of Hepatology, vol. 56, no. 2, pp. 464–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Iarrairaegui, K. G. Thurston, J. I. Bilbao et al., “Radioembolization with use of yttrium-90 resin microspheres in patients with hepatocellular carcinoma and portal vein thrombosis,” Journal of Vascular and Interventional Radiology, vol. 21, no. 8, pp. 1205–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. O. Chan, M.-F. Yuen, C.-K. Hui, W.-K. Tso, and C.-L. Lai, “A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma,” Cancer, vol. 94, no. 6, pp. 1747–1752, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. R. C. Gaba, A. Riaz, R. J. Lewandowski et al., “Safety of yttrium-90 microsphere radioembolization in patients with biliary obstruction,” Journal of Vascular and Interventional Radiology, vol. 21, no. 8, pp. 1213–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. J. I. Bilbao, A. De Martino, E. De Luis et al., “Biocompatibility, inflammatory response, and recannalization characteristics of nonradioactive resin microspheres: histological findings,” CardioVascular and Interventional Radiology, vol. 32, no. 4, pp. 727–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Furuse, H. Ishii, M. Nagase, M. Kawashima, T. Ogino, and M. Yoshino, “Adverse hepatic events caused by radiotherapy for advanced hepatocellular carcinoma,” Journal of Gastroenterology and Hepatology, vol. 20, no. 10, pp. 1512–1518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. W.-Y. Lau, A. S. Kennedy, Y. H. Kim et al., “Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres,” International Journal of Radiation Oncology Biology Physics, vol. 82, no. 1, pp. 401–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. B. Sangro, B. Gil-Alzugaray, J. Rodriguez et al., “Liver disease induced by radioembolization of liver tumors: description and possible risk factors,” Cancer, vol. 112, no. 7, pp. 1538–1546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Salem, R. J. Lewandowski, M. F. Mulcahy et al., “Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes,” Gastroenterology, vol. 138, no. 1, pp. 52–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Sangro, L. Carpanese, R. Cianni et al., “Survival after Yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation,” Hepatology, vol. 54, no. 3, pp. 868–878, 2011. View at Publisher · View at Google Scholar · View at Scopus