Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2011 (2011), Article ID 162804, 7 pages
http://dx.doi.org/10.4061/2011/162804
Review Article

Changes in the Perceived Epidemiology of Primary Hyperaldosteronism

S. C. Nefrologia e Dialisi, Azienda Ospedaliera di Perugia, S. Andrea delle Fratte, 06129 Perugia, Italy

Received 9 March 2011; Revised 9 May 2011; Accepted 13 June 2011

Academic Editor: Zafar Israili

Copyright © 2011 Riccardo Maria Fagugli and Chiara Taglioni. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Conn, “Presidential address. Part I. Painting background Part II. Primary aldosteronism, a new clinical syndrome,” The Journal of Laboratory and Clinical Medicine, vol. 45, no. 1, pp. 3–17, 1955. View at Google Scholar · View at Scopus
  2. L. M. Fishman, O. Küchel, G. W. Liddle, A. M. Michelakis, R. D. Gordon, and W. T. Chick, “Incidence of primary aldosteronism uncomplicated "essential" hypertension. A prospective study with elevated aldosterone secretion and suppressed plasma renin activity used as diagnostic criteria,” Journal of the American Medical Association, vol. 205, no. 7, pp. 497–502, 1968. View at Publisher · View at Google Scholar · View at Scopus
  3. N. M. Kaplan, “Commentary on incidence of primary aldosteronism: current estimations based on objective data,” Archives of Internal Medicine, vol. 123, no. 2, pp. 152–154, 1969. View at Google Scholar · View at Scopus
  4. J. W. Funder, R. M. Carey, C. Fardella et al., “Case detection, dsiagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society Clinical Practice Guideline,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, pp. 3266–3288, 2008. View at Google Scholar
  5. R. D. Gordon, “Primary aldosteronism—actual epidemics or false alarm?” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 48, no. 5, pp. 666–673, 2004. View at Google Scholar · View at Scopus
  6. A. Moraitis and C. Stratakis, “Adrenocortical causes of hypertension,” International Journal of Hypertension, vol. 2011, Article ID 624691, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. D. A. Calhoun, “Aldosteronism and hypertension,” Clinical journal of the American Society of Nephrology, vol. 1, no. 5, pp. 1039–1045, 2006. View at Publisher · View at Google Scholar · View at PubMed
  8. M. H. Weinberger, B. Roniker, S. L. Krause, and R. J. Weiss, “Eplerenone, a Selective Aldosterone Blocker, in mild-to-moderate hypertension,” American Journal of Hypertension, vol. 15, no. 8, pp. 709–716, 2002. View at Publisher · View at Google Scholar
  9. H. Krum, H. Nolly, D. Workman et al., “Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients,” Hypertension, vol. 40, no. 2, pp. 117–123, 2002. View at Publisher · View at Google Scholar
  10. L. M. Prisant, H. Krum, B. Roniker, S. L. Krause, K. Fakouhi, and W. He, “Can renin status predict the antihypertensive efficacy of eplerenone add-On therapy?” Journal of Clinical Pharmacology, vol. 43, no. 11, pp. 1203–1210, 2003. View at Publisher · View at Google Scholar · View at PubMed
  11. M. R. Weir and M. Rolfe, “Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 3, pp. 531–548, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. I. K. Eide, P. A. Torjesen, A. Drolsum, A. Babovic, and N. P. Lilledahl, “Low-renin status in therapy-resistant hypertension: a clue to efficient treatment,” Journal of Hypertension, vol. 22, no. 11, pp. 2217–2226, 2004. View at Publisher · View at Google Scholar
  13. R. S. Vasan, J. C. Evans, M. G. Larson et al., “Serum aldosterone and the incidence of hypertension in nonhypertensive persons,” The New England Journal of Medicine, vol. 351, no. 1, pp. 33–111, 2004. View at Publisher · View at Google Scholar · View at PubMed
  14. C. Newton-Cheh, C. Y. Guo, P. Gona et al., “Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample,” Hypertension, vol. 49, no. 4, pp. 846–856, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. Y. Furumatsu, Y. Nagasawa, K. Tomida et al., “Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker,” Hypertension Research, vol. 31, no. 1, pp. 59–67, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. A. Nishiyama, L. Yao, Y. Fan et al., “Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability,” Hypertension, vol. 45, no. 4, pp. 710–716, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. J. W. Conn, “The evolution of primary aldosteronism: 1954–1967,” Harvey Lectures, vol. 62, pp. 257–291, 1966. View at Google Scholar
  18. R. D Gordon, M. D. Ziesak, T. J. Tunyy et al., “Evidence that primary aldosteronism may not be uncommon: 12% incidence among hypertensive drug trial volunteers,” Clinical and Experimental Pharmacology and Physiology, vol. 20, pp. 296–298, 1993. View at Google Scholar
  19. R. D Gordon, M. D. Stowasser, T. J. Tunyy et al., “High prevalence in primary aldosteronism in 199 patients referred with hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 21, pp. 315–318, 1994. View at Google Scholar
  20. C. E. Fardella, L. Mosso, C. Gomez-Sanchez et al., “Primary aldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology,” The Journal of Clinical Endocrinology & Metabolism, vol. 85, pp. 1863–1867, 2000. View at Google Scholar
  21. O. Olivieri, A. Ciacciarelli, D. Signorelli et al., “Aldosterone to Renin Ratio in a primary care setting: the Bussolengo Study,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, pp. 4421–4426, 2004. View at Google Scholar
  22. G. P. Rossi, G. Bernini, C. Caliumi et al., “A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients,” Journal of the American College of Cardiology, vol. 48, no. 11, pp. 2293–2300, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. J. S. Williams, G. H. Williams, A. Raji et al., “Prevalence of primary hyperaldosteronism in mild to moderate hypertension without hypokalaemia,” Journal of Human Hypertension, vol. 20, no. 2, pp. 129–136, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. A. Calhoun, M. K. Nishizaka, M. A. Zaman, R. B. Thakkar, and P. Weissmann, “Hyperaldosteronism among black and white subjects with resistant hypertension,” Hypertension, vol. 40, no. 6, pp. 892–896, 2002. View at Publisher · View at Google Scholar
  25. B. J. Gallay, “Screening for primary aldosteronism without discontinuing hypertensive medications: plasma aldosterone-renin ratio,” American Journal of Kidney Diseases, vol. 37, no. 4, pp. 699–705, 2001. View at Google Scholar
  26. B. Strauch, T. Zelinka, M. Hampf et al., “Prevalence of primary aldosteronism in moderate to severe hypertension in the Central Europe region,” Journal of Human Hypertension, vol. 17, pp. 349–352, 2003. View at Google Scholar
  27. A. Di Murro, L. Petramala, D. Cotesta et al., “Renin-angiotensin-aldosterone system in patients with sleep apnoea: prevalence of primary aldosteronism,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 11, no. 3, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. J. J. Mukherjee, C. M. Khoo, A. C. Thai, S. B. Chionh, L. Pin, and K. O. Lee, “Type 2 diabetic patients with resistant hypertension should be screened for primary aldosteronism,” Diabetes and Vascular Disease Research, vol. 7, no. 1, pp. 6–13, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. G. E. Umpierrez, P. Cantey, D. Smiley et al., “Primary Aldosteronism in diabetic subjects with resistant hypertension,” Diabetes Care, vol. 30, no. 7, pp. 1699–1703, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. V. M. Montori and W. F. Young, “Use of plasma aldosterone concentration-to-plasma renin activity ratio as a screening test for primary aldosteronism: A systematic review of the literature,” Endocrinology and Metabolism Clinics of North America, vol. 31, no. 3, pp. 619–632, 2002. View at Publisher · View at Google Scholar
  31. N. M. Kaplan, “Is there an unrecognized epidemic of primary aldosteronism? Con.,” Hypertension, vol. 50, no. 3, pp. 454–458, 2007. View at Google Scholar
  32. L. Mosso, C. Carvajal, A. González et al., “Primary aldosteronism and hypertensive disease,” Hypertension, vol. 42, no. 2, pp. 161–165, 2003. View at Publisher · View at Google Scholar · View at PubMed
  33. G. P. Rossi, T. M. Seccia, G. Palumbo et al., “Within-patient reproducibility of the aldosterone:renin ratio in primary aldosteronism,” Hypertension, vol. 55, no. 1, pp. 83–89, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. D. Hiroara, K. Nomura, T. Okamoto et al., “Performance of the basal aldosterone to renin ratio and of renin stimulation test by furosemide and upright posture in screening for aldosterone-producing adenoma in low-renin hypertensives,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, pp. 4292–4298, 2001. View at Google Scholar
  35. I. K. Eide, P. A. Torjesen, A. Drolsum, A. Babovic, and N. P. Lilledahl, “Low-renin status in therapy-resistant hypertension: a clue to efficient treatment,” Journal of Hypertension, vol. 22, no. 11, pp. 2217–2226, 2004. View at Publisher · View at Google Scholar
  36. M. N. Pratt-Ubunama, M. K. Nishizaka, R. L. Boedefeld, S. S. Cofield, S. M. Harding, and D. A. Calhoun, “Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension,” Chest, vol. 131, no. 2, pp. 453–459, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. T. L. Goodfriend and D. A. Calhoun, “Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy,” Hypertension, vol. 43, no. 3, pp. 518–524, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. S. H. Saydah, J. Fradkin, and C. C. Cowie, “Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes,” Journal of the American Medical Association, vol. 291, no. 3, pp. 335–342, 2004. View at Publisher · View at Google Scholar · View at PubMed
  39. A. I. Adler, I. M. Stratton, H. A. W. Neil et al., “Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study,” British Medical Journal, vol. 321, no. 7258, pp. 412–419, 2000. View at Google Scholar
  40. P. Milliez, X. Girerd, P. F. Plouin, J. Blacher, M. E. Safar, and J. J. Mourad, “Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism,” Journal of the American College of Cardiology, vol. 45, no. 8, pp. 1243–1248, 2005. View at Publisher · View at Google Scholar · View at PubMed
  41. C. Catena, G. Colussi, R. Lapenna et al., “Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism,” Hypertension, vol. 50, no. 5, pp. 911–918, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. J. Funder, “Mineralcorticoids and cardiac fibrosis,” Clinical and Experimental Pharmacology and Physiology, vol. 28, pp. 1002–1006, 2001. View at Google Scholar
  43. C. Catena, G. Colussi, E. Nadalini et al., “Cardiovascular outcomes in patients with primary aldosteronism after treatment,” Archives of Internal Medicine, vol. 168, no. 1, pp. 80–85, 2008. View at Publisher · View at Google Scholar · View at PubMed
  44. E. Born-Frontsberg, M. Reinke, L. C. Rump et al., “Cardiovascular and cerebrovascular comorbidities of hypokaliemic and normokalemic primary aldosteronism: results of the German Conn's Registry,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, pp. 1125–1130, 2009. View at Google Scholar
  45. A. Tomaschitz, S. Pilz, E. Ritz, A. Meinitzer, B. O. Boehm, and W. März, “Plasma aldosterone levels are associated with increased cardiovascular mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study,” European Heart Journal, vol. 31, no. 10, pp. 1237–1247, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. B. Pitt, F. Zannad, W. J. Remme et al., “The effect of spironolactone on morbidity and mortality in patients with severe heart failure: randomized Aldactone Study Investigators,” The New England Journal of Medicine, vol. 341, pp. 709–717, 1999. View at Google Scholar
  47. S. D. Navaneethan, S. U. Nigwekar, A. R. Sehgal, and G. F. M. Strippoli, “Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 3, pp. 542–551, 2009. View at Publisher · View at Google Scholar · View at PubMed