Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2011, Article ID 587303, 12 pages
http://dx.doi.org/10.4061/2011/587303
Research Article

Integrated Evaluation of Age-Related Changes in Structural and Functional Vascular Parameters Used to Assess Arterial Aging, Subclinical Atherosclerosis, and Cardiovascular Risk in Uruguayan Adults: CUiiDARTE Project

1Physiology Department, School of Medicine and School of Science, CUiiDARTE, Republic University, General Flores 2125, 11800 Montevideo, Uruguay
2Cardiology Department, Cardiovascular Centre, School of Medicine, CUiiDARTE, Clinical Hospital, Republic University, Avenida Italia s/n, 11600 Montevideo, Uruguay
3Clinical Laboratory Department, School of Medicine, Clinical Hospital, Republic University, Avenida Italia s/n, 11600 Montevideo, Uruguay
4Physics Institute, School of Sciences, CUiiDARTE, Republic University, Iguá 4225, 11400 Montevideo, Uruguay

Received 2 April 2011; Revised 26 August 2011; Accepted 27 August 2011

Academic Editor: Roberto Pontremoli

Copyright © 2011 Daniel Bia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Naghavi, E. Falk, H. S. Hecht et al., “From vulnerable plaque to vulnerable patient-part III: executive summary of the screening for heart attack prevention and education (SHAPE) task force report,” American Journal of Cardiology, vol. 98, no. 2, pp. 2H–15H, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Greenland, J. S. Alpert, G. A. Beller et al., “2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Journal of the American College of Cardiology, vol. 56, no. 25, pp. e50–103, 2010. View at Google Scholar
  3. P. Boutouyrie and S. J. Vermeersch, “Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: establishing normal and reference values,” European Heart Journal, vol. 31, no. 19, pp. 2338–2350, 2010. View at Publisher · View at Google Scholar
  4. J. Escobedo, H. Schargrodsky, B. Champagne et al., “Prevalence of the metabolic syndrome in Latin America and its association with sub-clinical carotid atherosclerosis: the CARMELA cross sectional study,” Cardiovascular Diabetology, vol. 8, article 1475, 52 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Champagne, E. M. Sebrié, H. Schargrodsky, P. Pramparo, C. Boissonnet, and E. Wilson, “Tobacco smoking in seven Latin American cities: the CARMELA study,” Tobacco Control, vol. 19, no. 6, pp. 457–462, 2010. View at Google Scholar
  6. R. Vinueza, C. P. Boissonnet, M. Acevedo et al., “Dyslipidemia in seven Latin American cities: CARMELA study,” Preventive Medicine, vol. 50, no. 3, pp. 106–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Touboul, E. Vicaut, J. Labreuche et al., “Common carotid artery intima-media thickness: the cardiovascular risk factor multiple evaluation in Latin America (CARMELA) study results,” Cerebrovascular Diseases, vol. 31, no. 1, pp. 43–50, 2010. View at Publisher · View at Google Scholar
  8. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  9. National Cholesterol Education Program (NCEP) Expert Panel on Detection and Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), “Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report,” Circulation, vol. 106, no. 25, pp. 3143–3421, 2002. View at Google Scholar
  10. J. H. Stein, C. E. Korcarz, R. T. Hurst et al., “Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American society of echocardiography carotid intima-media thickness task force endorsed by the society for vascular medicine,” Journal of the American Society of Echocardiography, vol. 21, no. 2, pp. 93–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Laurent, J. Cockcroft, L. Van Bortel et al., “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal, vol. 27, no. 21, pp. 2588–2605, 2006. View at Publisher · View at Google Scholar
  12. D. Bia, Y. Zócalo, R. Armentano et al., “Non-invasive biomechanical evaluation of implanted human cryopreserved arterial homografts: comparison with pre-implanted cryografts and arteries from human donors and recipients,” Annals of Biomedical Engineering, vol. 37, no. 7, pp. 1273–1286, 2009. View at Google Scholar
  13. A. L. Pauca, M. F. O'Rourke, and N. D. Kon, “Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform,” Hypertension, vol. 38, no. 4, pp. 932–937, 2001. View at Google Scholar · View at Scopus
  14. W. W. Nichols and M. O'Rourke, “Properties of the arterial wall: theory,” in Mc Donald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, W. W. Nichols and M. O'Rourke, Eds., chapter 3, pp. 49–65, Edward Arnold, London, UK, 4th edition, 2005. View at Google Scholar
  15. W. W. Nichols and M. O'Rourke, “Properties of the arterial wall: practice,” in Mc Donald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, W. W. Nichols and M. O'Rourke, Eds., chapter 4, pp. 67–93, Edward Arnold, London, UK, 4th edition, 2005. View at Google Scholar
  16. P. J. Touboul, J. Labreuche, E. Vicaut et al., “Country-based reference values and impact of cardiovascular risk factors on carotid intima-media thickness in a french population: the “Paroi Artérielle et risque cardio-vasculaire” (PARC) study,” Cerebrovascular Diseases, vol. 27, no. 4, pp. 361–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Luo, Y. Yang, T. Cao, and Z. Li, “Differences in left and right carotid intima-media thickness and the associated risk factors,” Clinical Radiology, vol. 66, no. 5, pp. 393–398, 2011. View at Publisher · View at Google Scholar
  18. D. H. O'Leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke, and S. K. Wolfson Jr., “Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults: cardiovascular health study,” The New England Journal of Medicine, vol. 340, pp. 14–22, 1999. View at Google Scholar
  19. L. E. Chambless, G. Heiss, A. R. Folsom et al., “Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the atherosclerosis risk in communities (ARIC) study, 1987–1993,” American Journal of Epidemiology, vol. 146, no. 6, pp. 483–494, 1997. View at Google Scholar · View at Scopus
  20. P. Allan, P. Mowbray, A. Lee, and F. Fowkes, “Relationship between carotid intima-media thickness and symptomatic and asymptomatic peripheral arterial disease: the edinburgh artery study,” Stroke, vol. 28, no. 2, pp. 348–353, 1997. View at Google Scholar · View at Scopus
  21. S. Ebrahim, O. Papacosta, P. Whincup et al., “Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British regional heart study,” Stroke, vol. 30, no. 4, pp. 841–850, 1999. View at Google Scholar · View at Scopus
  22. I. M. Van der Meer, M. Bots, A. Hofman, A. I. del Sol, D. Van der Kuip, and J. Witteman, “Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the rotterdam study,” Circulation, vol. 109, no. 9, pp. 1089–1094, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zureik, P. J. Touboul, C. Bonithon-Kopp et al., “Cross-sectional and 4-year longitudinal associations between brachial pulse pressure and common carotid intima-media thickness in a general population: the EVA study,” Stroke, vol. 30, no. 3, pp. 550–555, 1999. View at Google Scholar · View at Scopus
  24. M. Junyent, R. Gilabert, I. Núñez et al., “Carotid ultrasound in the assessment of preclinical atherosclerosis. Distribution of intima-media thickness values and plaque frequency in a Spanish community cohort,” Medicina Clinica, vol. 125, no. 20, pp. 770–774, 2005. View at Google Scholar · View at Scopus
  25. J. Ferrieres, A. Elias, J. B. Ruidavets et al., “Carotid intima-media thickness and coronary heart disease risk factors in a low-risk population,” Journal of Hypertension, vol. 17, no. 6, pp. 743–748, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Ando, K. Takekuma, N. Niino, and H. Shimokata, “Ultrasonic evaluation of common carotid intima-media thickness (IMT). Influence of local plaque on the relationship between IMT and age,” Journal of Epidemiology, vol. 10, supplement 1, pp. S10–S17, 2000. View at Google Scholar · View at Scopus
  27. S. Homma, N. Hirose, H. Ishida, T. Ishii, and G. Araki, “Carotid plaque and intima-media thickness assessed by B-mode ultrasonography in subjects ranging from young adults to centenarians,” Stroke, vol. 32, no. 4, pp. 830–834, 2001. View at Google Scholar · View at Scopus
  28. R. Virmani, A. P. Avolio, W. J. Mergner et al., “Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis: comparison between occidental and Chinese communities,” American Journal of Pathology, vol. 139, no. 5, pp. 1119–1129, 1991. View at Google Scholar · View at Scopus
  29. S. S. Franklin, W. Gustin IIII, N. D. Wong et al., “Hemodynamic patterns of age-related changes in blood pressure: the Framingham heart study,” Circulation, vol. 96, no. 1, pp. 308–315, 1997. View at Google Scholar · View at Scopus
  30. A. Avolio, “Central aortic blood pressure and cardiovascular risk: a paradigm shift?” Hypertension, vol. 51, no. 6, pp. 1470–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. F. O'Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” American Journal of Hypertension, vol. 15, no. 5, pp. 426–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Segers, D. Mahieu, J. Kips et al., “Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women,” Hypertension, vol. 54, no. 2, pp. 414–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. W. Chung, Y. S. Lee, J. H. Kim et al., “Reference values for the augmentation index and pulse pressure in apparently healthy Korean subjects,” Korean Circulation Journal, vol. 40, no. 4, pp. 165–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Joakimsen, K. H. Bønaa, E. Stensland-Bugge, and B. K. Jacobsen, “Age and sex differences in the distribution and ultrasound morphology of carotid atherosclerosis: the Tromso study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 12, pp. 3007–3013, 1999. View at Google Scholar