Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012 (2012), Article ID 943605, 7 pages
http://dx.doi.org/10.1155/2012/943605
Review Article

Chronic Kidney Disease, Obesity, and Hypertension: The Role of Leptin and Adiponectin

1Division of Internal Medicine, Department of Medicine of the Systems, University of Rome “Tor Vergata”, Rome, Italy
2Division of Nephrology, Department of Medicine of the Systems, University of Rome “Tor Vergata”, Rome, Italy
3Division of Pharmacology, Department of Medicine of the Systems, University of Rome “Tor Vergata”, Rome, Italy
4Department of Internal Medicine, “Università Cattolica del Sacro Cuore”, Rome, Italy

Received 14 September 2012; Accepted 5 December 2012

Academic Editor: B. Waeber

Copyright © 2012 M. Tesauro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “K/DOQI clinical practice guideline for chronic kidney disease: evaluation, classification and stratification,” American Journal of Kidney Diseases, vol. 39, supplement 2, article 246, 2002.
  2. J. Coresh, E. Selvin, L. A. Stevens et al., “Prevalence of chronic kidney disease in the U.S. during 1988–1994 and 1999–2004,” The Journal of the American Medical Association, vol. 298, no. 17, pp. 2038–2047, 2007. View at Google Scholar
  3. D. O. Schlondorff, “Overview of factors contributing to the pathophysiology of progressive renal disease,” Kidney International, vol. 74, pp. 860–866, 2008. View at Publisher · View at Google Scholar
  4. M. Abbate, C. Zoja, and G. Remuzzi, “How does proteinuria cause progressive renal damage?” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2974–2984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. H. Hostetter, J. L. Olson, H. G. Rennke et al., “Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation,” American Journal of Physiology, vol. 10, no. 1, pp. F85–F93, 1981. View at Google Scholar · View at Scopus
  6. B. M. Brenner, T. W. Meyer, and T. H. Hostetter, “Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease,” New England Journal of Medicine, vol. 307, no. 11, pp. 652–659, 1982. View at Google Scholar · View at Scopus
  7. E. González, E. Gutiérrez, E. Morales et al., “Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney,” Kidney International, vol. 68, no. 1, pp. 263–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Tilg and A. R. Moschen, “Adipocytokines: mediators linking adipose tissue, inflammation and immunity,” Nature Reviews Immunology, vol. 6, no. 10, pp. 772–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. E. Alvarez, T. P. Ballard, S. D. Beske, and K. P. Davy, “Subcutaneous obesity is not associated with sympathetic neural activation,” American Journal of Physiology, vol. 287, no. 1 56-1, pp. H414–H418, 2004. View at Publisher · View at Google Scholar
  10. G. E. Alvarez, S. D. Beske, T. P. Ballard, and K. P. Davy, “Symphatetic neural activation in visceral obesity,” Circulation, vol. 106, no. 20, pp. 2533–2536, 2002. View at Google Scholar
  11. C. Weyer, R. E. Pratley, S. Snitker, M. Spraul, E. Ravussin, and P. A. Tataranni, “Ethnic differences in insulinemia and sympathetic tone as links between obesity and blood pressure,” Hypertension, vol. 36, no. 4, pp. 531–537, 2000. View at Google Scholar · View at Scopus
  12. I. C. Trombetta, L. T. Batalha, M. U. P. B. Rondon et al., “Weight loss improves neurovascular and muscle metaboreflex control in obesity,” American Journal of Physiology, vol. 285, no. 3, pp. H974–H982, 2003. View at Google Scholar
  13. M. Vaz, G. Jennings, A. Turner, H. Cox, G. Lambert, and M. Esler, “Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects,” Circulation, vol. 96, no. 10, pp. 3423–3429, 1997. View at Google Scholar · View at Scopus
  14. G. Grassi, R. Dell'Oro, A. Facchini, F. Q. Trevano, G. B. Bolla, and G. Mancia, “Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives,” Journal of Hypertension, vol. 22, no. 12, pp. 2363–2369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Grassi, G. Seravalle, M. Colombo et al., “Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans,” Circulation, vol. 97, no. 20, pp. 2037–2042, 1998. View at Google Scholar · View at Scopus
  16. E. Lurbe, V. Alvarez, Y. Liao et al., “Obesity modifies the relationship between ambulatory blood pressure and natriuresis in children,” Blood Pressure Monitoring, vol. 5, no. 5-6, pp. 275–280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. A. W. Cowley, “Renal medullary oxidative stress, pressure-natriuresis, and hypertension,” Hypertension, vol. 52, no. 5, pp. 777–786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. E. Selkurt, “Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion,” Circulation, vol. 4, no. 4, pp. 541–551, 1951. View at Google Scholar · View at Scopus
  19. L. A. Tartaglia, “The leptin receptor,” The Journal of Biological Chemistry, vol. 272, no. 10, pp. 6093–6096, 1997. View at Google Scholar · View at Scopus
  20. M. G. Castro and E. Morrison, “Post-translational processing of pro-opiomelanocortin in the pituitary and in the brain,” Critical Reviews in Neurobiology, vol. 11, no. 1, pp. 35–57, 1997. View at Google Scholar
  21. M. W. Schwartz, S. C. Woods, D. Porte Jr., R. J. Seeley, and D. G. Baskin, “Central nervous system control of foof intake,” Nature, vol. 404, no. 6778, pp. 661–671, 2000. View at Google Scholar
  22. B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. da Silva, J. J. Kuo, and J. E. Hall, “Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin,” Hypertension, vol. 43, no. 6, pp. 1312–1317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Sierra-Honigmann, A. K. Nath, C. Murakami et al., “Biological action of leptin as an angiogenic factor,” Science, vol. 281, no. 5383, pp. 1683–1686, 1998. View at Publisher · View at Google Scholar
  25. A. Oda, T. Taniguchi, and M. Yokoyama, “Leptin stimulates rat aortic smooth muscle celle proliferation and migration,” Kobe Journal of Medical Sciences, vol. 47, no. 3, pp. 141–159, 2001. View at Google Scholar
  26. S. I. Yamagishi, D. Edelstein, X. L. Du, Y. Kaneda, M. Guzmán, and M. Brownlee, “Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 25096–25100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. P. Montani, V. Antic, Z. Yang, and A. Dulloo, “Pathways from obesity to hypertension: from the perspective of a vicious triangle,” International Journal of Obesity, vol. 26, supplement 2, pp. S28–S38, 2002. View at Google Scholar
  28. D. L. Morris and L. Rui, “Recent advances in understanding leptin signaling and leptin resistance,” American Journal of Physiology, vol. 297, no. 6, pp. E1247–E1259, 2009. View at Publisher · View at Google Scholar
  29. N. Werner and G. Nickenig, “From fat fighter to risk factor: rhe zigzag trek of leptin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1, pp. 7–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. E. W. Shek, M. W. Brands, and J. E. Hall, “Chronic leptin infusion increases artrial pressure,” Hypertension, vol. 31, pp. 409–414, 1998. View at Publisher · View at Google Scholar
  31. M. Aizawa-Abe, Y. Ogawa, H. Masuzaki et al., “Pathophysiological role of leptin in obesity-related hypertension,” Journal of Clinical Investigation, vol. 105, no. 9, pp. 1243–1252, 2000. View at Google Scholar
  32. A. A. da Silva, J. do Carmo, J. Dubinion, and J. E. Hall, “The role of the sympathetic nervous system in obesity-related hypertension,” Current Hypertension Reports, vol. 11, no. 3, pp. 206–211, 2009. View at Google Scholar
  33. L. J. Prior, N. Eikelis, J. A. Armitage et al., “Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits,” Hypertension, vol. 55, no. 4, pp. 862–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Rahmouni, M. A. Fath, S. Seo et al., “Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1458–1467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. G. Haynes, D. A. Morgan, S. A. Walsh, A. L. Mark, and W. I. Sivitz, “Receptor-mediated regional sympathetic nerve activation by leptin,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 270–278, 1997. View at Google Scholar · View at Scopus
  36. C. Serradeil-Le Gal, D. Raufaste, G. Brossard et al., “Characterization and localization of leptin receptors in the rat kidney,” FEBS Letters, vol. 404, no. 2-3, pp. 185–191, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Wolf, A. Hamann, D. C. Han et al., “Leptin stimulates proliferation and TGF-β expression in renal glomerular endothelial cells: potential role in glomerulosclerosis,” Kidney International, vol. 56, no. 3, pp. 860–872, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. B. J. Ballerman, “A role for leptin in glomerulosclerosis?” Kidney International, vol. 56, no. 3, pp. 1154–1155, 1999. View at Google Scholar
  39. B. L. Kasiske and J. T. Crosson, “Renal disease in patients with massive obesity,” Archives of Internal Medicine, vol. 146, no. 6, pp. 1105–1109, 1986. View at Google Scholar · View at Scopus
  40. M. Praga, E. Hernandez, J. C. Herrero et al., “Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy,” Kidney International, vol. 58, no. 5, pp. 2111–2118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Wilson, R. Nelson, M. Nicolson, and R. Pratley, “Plasma leptin concentrations: no difference between diabetic pima indians with and without nephropathy,” Diabetologia, vol. 41, no. 7, pp. 861–862, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Phillips, T. P. Ciaraldi, D. K. Oh, M. K. Savu, and R. R. Henry, “Adiponectin secretion and response to pioglitazone is depot dependent in cultured human adipose tissue,” American Journal of Physiology, vol. 295, no. 4, pp. E842–E850, 2008. View at Publisher · View at Google Scholar
  43. M. Adamczak, A. Wiȩcek, T. Funahashi, J. Chudek, F. Kokot, and Y. Matsuzawa, “Decreased plasma adiponectin concentration in patients with essential hypertension,” American Journal of Hypertension, vol. 16, no. 1, pp. 72–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Iwashima, T. Katsuya, K. Ishikawa et al., “Hypoadiponectinemia is an independent risk factor for hypertension,” Hypertension, vol. 43, no. 6, pp. 1318–1323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. W. S. Chow, B. M. Y. Cheung, A. W. K. Tso et al., “Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study,” Hypertension, vol. 49, no. 6, pp. 1455–1461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Ohashi, S. Kihara, N. Ouchi et al., “Adiponectin replenishment ameliorates obesity-related hypertension,” Hypertension, vol. 47, no. 6, pp. 1108–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Sam, T. A. S. Duhaney, K. Sato et al., “Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure,” Endocrinology, vol. 151, no. 1, pp. 322–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. T. F. Luscher, “The endothelium and cardiovascular disease—a complex relation,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1081–1083, 1994. View at Publisher · View at Google Scholar
  49. K. C. B. Tan, A. Xu, W. S. Chow et al., “Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 765–769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Ouchi, M. Ohishi, S. Kihara et al., “Association of hypoadiponectinemia with impaired vasoreactivity,” Hypertension, vol. 42, no. 3, pp. 231–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. P. L. Huang, Z. Huang, H. Mashimo et al., “Hypertension in mice lacking the gene for endothelial nitric oxide synthase,” Nature, vol. 377, no. 6546, pp. 239–242, 1995. View at Google Scholar · View at Scopus
  52. T. J. Guzik, E. Black, N. E. West et al., “Relationship between the G894T polymorphism (Glu 298 Asp variant) in endothelial nitric oxide synthase and nitric oxide-mediated endothelial function in human atherosclerosis,” American Journal of Medical Genetics, vol. 100, no. 2, pp. 130–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Nishimura, Y. Izumiya, A. Higuchi et al., “Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase-dependent mechanisms,” Circulation, vol. 117, no. 2, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Ouchi, H. Kobayashi, S. Kihara et al., “Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells,” The Journal of Biological Chemistry, vol. 279, no. 2, pp. 1304–1309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Chen, M. Montagnani, T. Funahashi, I. Shimomura, and M. J. Quon, “Adiponectin stimulates production of nitric oxide in vascular endothelial cells,” The Journal of Biological Chemistry, vol. 278, no. 45, pp. 45021–45026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. K. K. Y. Cheng, K. S. L. Lam, Y. Wang et al., “Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells,” Diabetes, vol. 56, no. 5, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Tsioufis, K. Dimitriadis, D. Chatzis et al., “Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension,” American Journal of Cardiology, vol. 96, no. 7, pp. 946–951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Yano, S. Hoshide, J. Ishikawa et al., “Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes,” Journal of Clinical Hypertension, vol. 9, no. 10, pp. 775–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Sharma, S. RamachandraRao, G. Qiu et al., “Adiponectin regulates albuminuria and podocyte function in mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1645–1656, 2008. View at Publisher · View at Google Scholar
  60. I. M. Kacso, C. I. Bondor, and G. Kacso, “Plasma adiponectin is related to the progression of kidney disease in type 2 diabetes patients,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 72, no. 4, pp. 333–339, 2012. View at Publisher · View at Google Scholar