Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2013 (2013), Article ID 230868, 15 pages
http://dx.doi.org/10.1155/2013/230868
Review Article

Hypertension in Metabolic Syndrome: Vascular Pathophysiology

Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), 02006 Albacete, Spain

Received 28 November 2012; Revised 5 February 2013; Accepted 13 February 2013

Academic Editor: Roberto Miguel Miatello

Copyright © 2013 Yolanda Mendizábal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Google Scholar · View at Scopus
  2. H. Yki-Järvinen and T. Utriainen, “Insulin-induced vasodilatation: physiology or pharmacology?” Diabetologia, vol. 41, no. 4, pp. 369–379, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Garrison, W. B. Kannel, J. Stokes III, and W. P. Castelli, “Incidence and precursors of hypertension in young adults: the Framingham offspring study,” Preventive Medicine, vol. 16, no. 2, pp. 235–251, 1987. View at Google Scholar · View at Scopus
  4. J. Alexander, H. P. Dustan, E. A. H. Sims, and R. Tarazi, Report of the Hypertension Task Force, US Department of Health, Education, and Welfare Publication No. 70-1631 (NIH), US Government Printing Office, Washington, DC, USA, 1979.
  5. M. L. Tuck, J. Sowers, and L. Dornfeld, “The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients,” The New England Journal of Medicine, vol. 304, no. 16, pp. 930–933, 1981. View at Google Scholar · View at Scopus
  6. E. Reisin, R. Abel, M. Modan et al., “Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients,” The New England Journal of Medicine, vol. 298, no. 1, pp. 1–6, 1978. View at Google Scholar · View at Scopus
  7. P. Berchtold, V. Joergens, C. Finke, and M. Berger, “Epidemiology of obesity and hypertension,” International Journal of Obesity, vol. 5, supplement 1, pp. 1–7, 1981. View at Google Scholar · View at Scopus
  8. E. Kylin, “Hypertonie and zuckerkrankheit,” Zentralblatt für Innere Medizin, vol. 42, pp. 873–877, 1921. View at Google Scholar
  9. G. Marañón, “Über hypertonie and zuckerkrankheit,” Zentralblatt für Innere Medizin, vol. 43, pp. 169–176, 1922. View at Google Scholar
  10. N. M. Kaplan, “The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension,” Archives of Internal Medicine, vol. 149, no. 7, pp. 1514–1520, 1989. View at Google Scholar · View at Scopus
  11. P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Turtle, “The economic burden of insulin resistance,” International Journal of Clinical Practice, no. 113, pp. 23–28, 2000. View at Google Scholar · View at Scopus
  13. K. Uemura and Z. Pisa, “Trends in cardiovascular disease mortality in industrialized countries since 1950,” World Health Statistics Quarterly, vol. 41, no. 3-4, pp. 155–178, 1988. View at Google Scholar · View at Scopus
  14. G. Critser, Fat Land: How Americans Became the Fattest People in the World, Mariner Books, 2004.
  15. J. W. Rowe, J. B. Young, K. L. Minaker et al., “Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man,” Diabetes, vol. 30, no. 3, pp. 219–225, 1981. View at Google Scholar · View at Scopus
  16. G. Lembo, R. Napoli, B. Capaldo et al., “Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension,” The Journal of Clinical Investigation, vol. 90, no. 1, pp. 24–29, 1992. View at Google Scholar · View at Scopus
  17. J. C. Ter Maaten, A. Voorburg, R. J. Heine, P. M. Ter Wee, A. J. M. Donker, and R. O. B. Gans, “Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects,” Clinical Science, vol. 92, no. 1, pp. 51–58, 1997. View at Google Scholar · View at Scopus
  18. H. Vierhapper, “Effect of exogenous insulin on blood pressure regulation in healthy and diabetic subjects,” Hypertension, vol. 7, no. 6, part 2, pp. II49–II53, 1985. View at Google Scholar · View at Scopus
  19. J. E. Hall, “Mechanisms of abnormal renal sodium handling in obesity hypertension,” American Journal of Hypertension, vol. 10, no. 5, part 2, pp. 49S–55S, 1997. View at Google Scholar · View at Scopus
  20. M. Carlyle, O. B. Jones, J. J. Kuo, and J. E. Hall, “Chronic cardiovascular and renal actions of leptin: role of adrenergic activity,” Hypertension, vol. 39, no. 2, pp. 496–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Eikelis, M. Schlaich, A. Aggarwal, D. Kaye, and M. Esler, “Interactions between leptin and the human sympathetic nervous system,” Hypertension, vol. 41, no. 5, pp. 1072–1079, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Marsh, M. A. P. Fontes, S. Killinger, D. B. Pawlak, J. W. Polson, and R. A. L. Dampney, “Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus,” Hypertension, vol. 42, no. 4, pp. 488–493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. G. E. Alvarez, S. D. Beske, T. P. Ballard, and K. P. Davy, “Sympathetic neural activation in visceral obesity,” Circulation, vol. 106, no. 20, pp. 2533–2536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. P. Himsworth, “Diabetes mellitus. its differentiation into insulin-sensitive and insulin-insensitive types,” The Lancet, vol. 227, no. 5864, pp. 127–130, 1936. View at Google Scholar · View at Scopus
  25. H. P. Himsworth and R. Kerr, “Insulin-sensitive and insulin-insensitive diabetes mellitus,” Clinical Science, vol. 4, pp. 199–152, 1939. View at Google Scholar
  26. H. E. Lebovitz, “Insulin resistance: definition and consequences,” Experimental and Clinical Endocrinology and Diabetes, vol. 109, supplement 2, pp. S135–S148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Arcaro, M. Zamboni, L. Rossi et al., “Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity,” International Journal of Obesity and Related Metabolic Disorders, vol. 23, no. 9, pp. 936–942, 1999. View at Google Scholar · View at Scopus
  28. H. O. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel, and A. D. Baron, “Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance,” The Journal of Clinical Investigation, vol. 97, no. 11, pp. 2601–2610, 1996. View at Google Scholar · View at Scopus
  29. I. Tarkun, B. C. Arslan, Z. Cantürk, E. Türemen, T. Şahin, and C. Duman, “Endothelial dysfunction in young women with polycystic ovary syndrome: relationship with insulin resistance and low-grade chronic inflammation,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5592–5596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Muniyappa, M. Montagnani, K. K. Koh, and M. J. Quon, “Cardiovascular actions of insulin,” Endocrine Reviews, vol. 28, no. 5, pp. 463–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. L. King and S. M. Johnson, “Receptor-mediated transport of insulin across endothelial cells,” Science, vol. 227, no. 4694, pp. 1583–1586, 1985. View at Google Scholar · View at Scopus
  32. U. Scherrer, D. Randin, P. Vollenweider, L. Vollenweider, and P. Nicod, “Nitric oxide release accounts for insulin's vascular effects in humans,” The Journal of Clinical Investigation, vol. 94, no. 6, pp. 2511–2515, 1994. View at Google Scholar · View at Scopus
  33. H. O. Steinberg, G. Brechtel, A. Johnson, N. Fineberg, and A. D. Baron, “Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release,” The Journal of Clinical Investigation, vol. 94, no. 3, pp. 1172–1179, 1994. View at Google Scholar · View at Scopus
  34. R. Govers and T. J. Rabelink, “Cellular regulation of endothelial nitric oxide synthase,” American Journal of Physiology, vol. 280, no. 2, pp. F193–F206, 2001. View at Google Scholar · View at Scopus
  35. S. R. Kashyap, L. J. Roman, J. Lamont et al., “Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 1100–1105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Calver, J. Collier, and P. Vallance, “Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes,” The Journal of Clinical Investigation, vol. 90, no. 6, pp. 2548–2554, 1992. View at Google Scholar · View at Scopus
  37. R. T. De Jongh, E. H. Serné, R. G. Ijzerman, G. De Vries, and C. D. A. Stehouwer, “Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance,” Circulation, vol. 109, no. 21, pp. 2529–2535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Gudbjörnsdottir, M. Elam, J. Sellgren, and E. A. Anderson, “Insulin increases forearm vascular resistance in obese, insulin-resistant hypertensives,” Journal of Hypertension, vol. 14, no. 1, pp. 91–97, 1996. View at Google Scholar · View at Scopus
  39. C. A. Schroeder, Y. L. Chen, and E. J. Messina, “Inhibition of NO synthesis or endothelium removal reveals a vasoconstrictor effect of insulin on isolated arterioles,” American Journal of Physiology, vol. 276, no. 3, pp. H815–H820, 1999. View at Google Scholar · View at Scopus
  40. R. R. Shankar, Y. Wu, H. Q. Shen, J. S. Zhu, and A. D. Baron, “Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance,” Diabetes, vol. 49, no. 5, pp. 684–687, 2000. View at Google Scholar · View at Scopus
  41. E. Nava, S. Llorens, and Y. Mendizabal, “Vascular function in diabetes mellitus,” in Treatment Strategies-Diabetes, R. Holcroft, Ed., vol. 2, pp. 209–225, Cambridge Research Centre, 2010. View at Google Scholar
  42. M. Montagnani, H. Chen, V. A. Barr, and M. J. Quon, “Insulin-stimulated activation of eNOS is Independent of Ca2+ but requires phosphorylation by Akt at Ser1179,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30392–30398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. F. J. Oliver, G. De la Rubia, E. P. Feener et al., “Stimulation of endothelin-1 gene expression by insulin in endothelial cells,” Journal of Biological Chemistry, vol. 266, no. 34, pp. 23251–23256, 1991. View at Google Scholar · View at Scopus
  44. H. A. Wolpert, S. N. Steen, N. W. Istfan, and D. C. Simonson, “Insulin modulates circulating endothelin-1 levels in humans,” Metabolism, vol. 42, no. 8, pp. 1027–1030, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Ferri, V. Pittoni, A. Piccoli et al., “Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 3, pp. 829–835, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Cardillo, S. S. Nambi, C. M. Kilcoyne et al., “Insulin stimulates both endothelin and nitric oxide activity in the human forearm,” Circulation, vol. 100, no. 8, pp. 820–825, 1999. View at Google Scholar · View at Scopus
  47. E. C. Eringa, C. D. A. Stehouwer, T. Merlijn, N. Westerhof, and P. Sipkema, “Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles,” Cardiovascular Research, vol. 56, no. 3, pp. 464–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Verma, L. Yao, D. J. Stewart, A. S. Dumont, T. J. Anderson, and J. H. McNeill, “Endothelin antagonism uncovers insulin-mediated vasorelaxation in vitro and in vivo,” Hypertension, vol. 37, no. 2, pp. 328–333, 2001. View at Google Scholar · View at Scopus
  49. M. Tesauro, M. Iantorno, F. Schinzari, and C. Cardillo, “Vascular effects of insulin and their relation to endothelial dysfunction, insulin resistance and hypertension,” Current Hypertension Reviews, vol. 5, no. 4, pp. 251–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. P. D. Taylor and L. Poston, “The effect of hyperglycaemia on function of rat isolated mesenteric resistance artery,” British Journal of Pharmacology, vol. 113, no. 3, pp. 801–808, 1994. View at Google Scholar · View at Scopus
  51. H. G. Bohlen and J. M. Lash, “Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles,” American Journal of Physiology, vol. 265, no. 1, part 2, pp. H219–H225, 1993. View at Google Scholar · View at Scopus
  52. P. D. Taylor, A. L. McCarthy, C. R. Thomas, and L. Poston, “Endothelium-dependent relaxation and noradrenaline sensitivity in mesenteric resistance arteries of streptozotocin-induced diabetic rats,” British Journal of Pharmacology, vol. 107, no. 2, pp. 393–399, 1992. View at Google Scholar · View at Scopus
  53. C. M. Akbari, R. Saouaf, D. F. Barnhill, P. A. Newman, F. W. LoGerfo, and A. Veves, “Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia,” Journal of Vascular Surgery, vol. 28, no. 4, pp. 687–694, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Sobrevia, A. Nadal, D. L. Yudilevich, and G. E. Mann, “Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells,” Journal of Physiology, vol. 490, no. 3, pp. 775–781, 1996. View at Google Scholar · View at Scopus
  55. C. Renaudin, E. Michoud, J. R. Rapin, M. Lagarde, and N. Wiernsperger, “Hyperglycaemia modifies the reaction of microvessels to insulin in rat skeletal muscle,” Diabetologia, vol. 41, no. 1, pp. 26–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Modan, H. Halkin, and S. Almog, “Hyperinsulinemia. A link between hypertension obesity and glucose intolerance,” The Journal of Clinical Investigation, vol. 75, no. 3, pp. 809–817, 1985. View at Google Scholar · View at Scopus
  57. E. Ferrannini, G. Buzzigoli, and R. Bonadonna, “Insulin resistance in essential hypertension,” The New England Journal of Medicine, vol. 317, no. 6, pp. 350–357, 1987. View at Google Scholar · View at Scopus
  58. K. Landin, L. Tengborn, and U. Smith, “Treating insulin resistance inhypertension with metformin reduces both blood pressure and metabolic risk factors,” Journal of Internal Medicine, vol. 229, no. 2, pp. 181–187, 1991. View at Google Scholar · View at Scopus
  59. T. Ogihara, H. Rakugi, H. Ikegami, H. Mikami, and K. Masuo, “Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives,” American Journal of Hypertension, vol. 8, no. 3, pp. 316–320, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. F. M. A. C. Martens, F. L. J. Visseren, J. Lemay, E. J. P. De Koning, and T. J. Rabelink, “Metabolic and additional vascular effects of thiazolidinediones,” Drugs, vol. 62, no. 10, pp. 1463–1480, 2002. View at Google Scholar · View at Scopus
  61. R. A. Sanchez, L. D. Masnatta, C. Pesiney, P. Fischer, and A. J. Ramirez, “Telmisartan improves insulin resistance in high renin nonmodulating salt-sensitive hypertensives,” Journal of Hypertension, vol. 26, no. 12, pp. 2393–2398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Umeda, T. Kanda, and M. Murakami, “Effects of angiotensin II receptor antagonists on insulin resistance syndrome and leptin in sucrose-fed spontaneously hypertensive rats,” Hypertension Research, vol. 26, no. 6, pp. 485–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. J. E. Hall, R. L. Summers, M. W. Brands, H. Keen, and M. Alonso-Galicia, “Resistance to metabolic actions of insulin and its role in hypertension,” American Journal of Hypertension, vol. 7, no. 8, pp. 772–788, 1994. View at Google Scholar · View at Scopus
  64. K. S. Cook, H. Y. Min, D. Johnson et al., “Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve,” Science, vol. 237, no. 4813, pp. 402–405, 1987. View at Google Scholar · View at Scopus
  65. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  66. T. Funahashi, T. Nakamura, I. Shimomura et al., “Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity,” Internal Medicine, vol. 38, no. 2, pp. 202–206, 1999. View at Google Scholar · View at Scopus
  67. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Trayhurn and I. S. Wood, “Adipokines: inflammation and the pleiotropic role of white adipose tissue,” British Journal of Nutrition, vol. 92, no. 3, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Parker, J. Lane, and L. Axelrod, “Cooperation of adipocytes and endothelial cells required for catecholamine stimulation of PGI2 production by rat adipose tissue,” Diabetes, vol. 38, no. 9, pp. 1123–1132, 1989. View at Google Scholar · View at Scopus
  70. Y. Matsuzawa, “The metabolic syndrome and adipocytokines,” FEBS Letters, vol. 580, no. 12, pp. 2917–2921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. E. E. Soltis and L. A. Cassis, “Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness,” Clinical and Experimental Hypertension A, vol. 13, no. 2, pp. 277–296, 1991. View at Google Scholar · View at Scopus
  72. M. C. González, S. M. Arribas, F. Molero, and M. S. Fernández-Alfonso, “Effect of removal of adventitia on vascular smooth muscle contraction and relaxation,” American Journal of Physiology, vol. 280, no. 6, pp. H2876–H2881, 2001. View at Google Scholar · View at Scopus
  73. Y. J. Gao, K. Takemori, L. Y. Su et al., “Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion,” Cardiovascular Research, vol. 71, no. 2, pp. 363–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. F. E. Rey, X. C. Li, O. A. Carretero, J. L. Garvin, and P. J. Pagano, “Perivascular superoxide anion contributes to impairment of endothelium-dependent relaxation role of gp91phox,” Circulation, vol. 106, no. 19, pp. 2497–2502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Löhn, G. Dubrovska, B. Lauterbach, F. C. Luft, M. Gollasch, and A. M. Sharma, “Periadventitial fat releases a vascular relaxing factor,” The FASEB Journal, vol. 16, no. 9, pp. 1057–1063, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Verlohren, G. Dubrovska, S. Y. Tsang et al., “Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries,” Hypertension, vol. 44, no. 3, pp. 271–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Maenhaut and J. Van deVoorde, “Regulation of vascular tone by adipocytes,” BMC Medicine, vol. 9, article 25, 2011. View at Publisher · View at Google Scholar
  78. Y. J. Gao, C. Lu, L. Y. Su, A. M. Sharma, and R. M. K. W. Lee, “Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide,” British Journal of Pharmacology, vol. 151, no. 3, pp. 323–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. J. Gao, Z. H. Zeng, K. Teoh et al., “Perivascular adipose tissue modulates vascular function in the human internal thoracic artery,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 4, pp. 1130–1136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Schleifenbaum, C. Köhn, N. Voblova et al., “Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide,” Journal of Hypertension, vol. 28, no. 9, pp. 1875–1882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. R. Sierra-Honigmann, A. K. Nath, C. Murakami et al., “Biological action of leptin as an angiogenic factor,” Science, vol. 281, no. 5383, pp. 1683–1686, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Winters, Z. Mo, E. Brooks-Asplund et al., “Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice,” Journal of Applied Physiology, vol. 89, no. 6, pp. 2382–2390, 2000. View at Google Scholar · View at Scopus
  83. T. Shirasaka, M. Takasaki, and H. Kannan, “Cardiovascular effects of leptin and orexins,” American Journal of Physiology, vol. 284, no. 3, pp. R639–R651, 2003. View at Google Scholar · View at Scopus
  84. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Frühbeck, “Pivotal role of nitric oxide in the control of blood pressure after leptin administration,” Diabetes, vol. 48, no. 4, pp. 903–908, 1999. View at Google Scholar · View at Scopus
  86. J. D. Knudson, U. D. Dincer, C. Zhang et al., “Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction,” American Journal of Physiology, vol. 289, no. 1, pp. H48–H56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Yamauchi, J. Kamon, H. Waki et al., “The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity,” Nature Medicine, vol. 7, no. 8, pp. 941–946, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Kondo, L. Shimomura, Y. Matsukawa et al., “Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome,” Diabetes, vol. 51, no. 7, pp. 2325–2328, 2002. View at Google Scholar · View at Scopus
  90. M. Takahashi, T. Funahashi, I. Shimomura, K. Miyaoka, and Y. Matsuzawa, “Plasma leptin levels and body fat distribution,” Hormone and Metabolic Research, vol. 28, no. 12, pp. 751–752, 1996. View at Google Scholar · View at Scopus
  91. K. Asayama, H. Hayashibe, K. Dobashi et al., “Decrease in serum adiponectin level due to obesity and visceral fat accumulation in children,” Obesity Research, vol. 11, no. 9, pp. 1072–1079, 2003. View at Google Scholar · View at Scopus
  92. W. Xi, H. Satoh, H. Kase, K. Suzuki, and Y. Hattori, “Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Fésüs, G. Dubrovska, K. Gorzelniak et al., “Adiponectin is a novel humoral vasodilator,” Cardiovascular Research, vol. 75, no. 4, pp. 719–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. A. S. Greenstein, K. Khavandi, S. B. Withers et al., “Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients,” Circulation, vol. 119, no. 12, pp. 1661–1670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. R. S. Lindsay, T. Funahashi, R. L. Hanson et al., “Adiponectin and development of type 2 diabetes in the Pima Indian population,” The Lancet, vol. 360, no. 9326, pp. 57–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Stefan, B. Vozarova, T. Funahashi et al., “Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans,” Diabetes, vol. 51, no. 6, pp. 1884–1888, 2002. View at Google Scholar · View at Scopus
  97. F. Mallamaci, C. Zoccali, F. Cuzzola et al., “Adiponectin in essential hypertension,” Journal of Nephrology, vol. 15, no. 5, pp. 507–511, 2002. View at Google Scholar · View at Scopus
  98. K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Google Scholar · View at Scopus
  100. B. Richelsen, J. D. Borglum, and S. S. Sorensen, “Biosynthetic capacity and regulatory aspects of prostaglandin E2 formation in adipocytes,” Molecular and Cellular Endocrinology, vol. 85, no. 1-2, pp. 73–81, 1992. View at Google Scholar · View at Scopus
  101. J. N. Fain, C. W. Leffler, G. S. M. Cowan Jr., C. Buffington, L. Pouncey, and S. W. Bahouth, “Stimulation of leptin release by arachidonic acid and prostaglandin E2 in adipose tissue from obese humans,” Metabolism, vol. 50, no. 8, pp. 921–928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. J. A. Kim, M. Montagnani, K. K. Koh, and M. J. Quon, “Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms,” Circulation, vol. 113, no. 15, pp. 1888–1904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Engeli, P. Schling, K. Gorzelniak et al., “The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome?” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 807–825, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. C. M. Boustany, K. Bharadwaj, A. Daugherty, D. R. Brown, D. C. Randall, and L. A. Cassis, “Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension,” American Journal of Physiology, vol. 287, no. 4, pp. R943–R949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Gálvez-Prieto, J. Bolbrinker, P. Stucchi et al., “Comparative expression analysis of the renin—angiotensin system components between white and brown perivascular adipose tissue,” Journal of Endocrinology, vol. 197, no. 1, pp. 55–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. A. M. Briones, A. Nguyen Dinh Cat, G. E. Callera et al., “Adipocytes produce aldosterone through calcineurin-dependent signaling pathways,” Hypertension, vol. 59, no. 5, pp. 1069–1078, 2012. View at Google Scholar
  107. R. C. Frederich Jr., B. B. Kahn, M. J. Peach, and J. S. Flier, “Tissue-specific nutritional regulation of angiotensinogen in adipose tissue,” Hypertension, vol. 19, no. 4, pp. 339–344, 1992. View at Google Scholar · View at Scopus
  108. K. Rahmouni, A. L. Mark, W. G. Haynes, and C. D. Sigmund, “Adipose depot-specific modulation of angiotensinogen gene expression in diet-induced obesity,” American Journal of Physiology, vol. 286, no. 6, pp. E891–E895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. T. L. Goodfriend and D. A. Calhoun, “Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy,” Hypertension, vol. 43, no. 3, pp. 518–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Ehrhart-Bornstein, V. Lamounier-Zepter, A. Schraven et al., “Human adipocytes secrete mineralocorticoid-releasing factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14211–14216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. A. W. Krug and M. Ehrhart-Bornstein, “Newly discovered endocrine functions of white adipose tissue: possible relevance in obesity-related diseases,” Cellular and Molecular Life Sciences, vol. 62, no. 12, pp. 1359–1362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. J. M. C. Connell and E. Davies, “The new biology of aldosterone,” Journal of Endocrinology, vol. 186, no. 1, pp. 1–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. A. P. Rocchini, C. Moorehead, S. DeRemer, T. L. Goodfriend, and D. L. Ball, “Hyperinsulinemia and the aldosterone and pressor responses to angiotensin II,” Hypertension, vol. 15, no. 6, part 2, pp. 861–866, 1990. View at Google Scholar · View at Scopus
  114. D. Petrasek, G. Jensen, M. Tuck, and N. Stern, “In vitro effects of insulin on aldosterone production in rat zona glomerulosa cells,” Life Sciences, vol. 50, no. 23, pp. 1781–1787, 1992. View at Publisher · View at Google Scholar · View at Scopus
  115. J. N. Fain, B. M. Tagele, P. Cheema, A. K. Madan, and D. S. Tichansky, “Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women,” Obesity, vol. 18, no. 5, pp. 890–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Morise, Y. Takeuchi, M. Kawano, I. Koni, and R. Takeda, “Increased plasma levels of immunoreactive endothelin and von Willebrand factor in NIDDM patients,” Diabetes Care, vol. 18, no. 1, pp. 87–89, 1995. View at Google Scholar · View at Scopus
  117. A. A. Da Silva, J. J. Kuo, L. S. Tallam, and J. E. Hall, “Role of endothelin-1 in blood pressure regulation in a rat model of visceral obesity and hypertension,” Hypertension, vol. 43, no. 2, pp. 383–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Barton, R. Carmona, J. Ortmann, J. E. Krieger, and T. Traupe, “Obesity-associated activation of angiotensin and endothelin in the cardiovascular system,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 826–837, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. V. Van Harmelen, A. Eriksson, G. Åström et al., “Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis,” Diabetes, vol. 57, no. 2, pp. 378–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. L. M. Zucker and T. F. Zucker, “Fatty, a new mutation in the rat,” Journal of Heredity, vol. 52, no. 6, pp. 275–278, 1961. View at Google Scholar · View at Scopus
  121. S. C. Chua Jr., W. K. Chung, X. S. Wu-Peng et al., “Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor,” Science, vol. 271, no. 5251, pp. 994–996, 1996. View at Google Scholar · View at Scopus
  122. M. S. Phillips, Q. Liu, H. A. Hammond et al., “Leptin receptor missense mutation in the fatty Zucker rat,” Nature Genetics, vol. 13, no. 1, pp. 18–19, 1996. View at Google Scholar · View at Scopus
  123. G. A. Bray, “The Zucker fatty rat: a review,” Federation Proceedings, vol. 36, no. 2, pp. 148–153, 1977. View at Google Scholar · View at Scopus
  124. M. Alonso-Galicia, M. W. Brands, D. H. Zappe, and J. E. Hall, “Hypertension in obese Zucker rats: role of angiotensin II and adrenergic activity,” Hypertension, vol. 28, no. 6, pp. 1047–1054, 1996. View at Google Scholar · View at Scopus
  125. L. Landsberg and D. R. Krieger, “Obesity, metabolism, and the sympathetic nervous system,” American Journal of Hypertension, vol. 2, no. 3, part 2, pp. 125S–132S, 1989. View at Google Scholar · View at Scopus
  126. A. Aleixandre and M. Miguel, “Experimental rat models to study the metabolic syndrome,” British Journal of Nutrition, vol. 102, no. 9, pp. 1246–1253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Auguet, S. Delaflotte, and P. Braquet, “Increased influence of endothelium in obese zucker rat aorta,” Journal of Pharmacy and Pharmacology, vol. 41, no. 12, pp. 861–864, 1989. View at Google Scholar · View at Scopus
  128. R. H. Cox and D. C. Kikta, “Age-related changes in thoracic aorta of obese Zucker rats,” American Journal of Physiology, vol. 262, no. 5, part 2, pp. H1548–H1556, 1992. View at Google Scholar · View at Scopus
  129. V. Sexl, G. Mancusi, G. Raberger, and W. Schutz, “Age-related changes in vascular reactivity in genetically diabetic rats,” Pharmacology, vol. 50, no. 4, pp. 238–246, 1995. View at Google Scholar · View at Scopus
  130. T. J. Andrews, D. W. Laicht, E. E. Änggård, and M. J. Carrier, “Investigation of endothelial hyperreactivity in the obese Zucker rat in-situ: reversal by vitamin E,” Journal of Pharmacy and Pharmacology, vol. 52, no. 1, pp. 83–86, 2000. View at Google Scholar · View at Scopus
  131. D. W. Laight, E. E. Änggård, and M. J. Carrier, “Investigation of basal endothelial function in the obese Zucker rat in vitro,” General Pharmacology, vol. 35, no. 6, pp. 303–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. H. G. Bohlen and J. M. Lash, “Endothelial-dependent vasodilation is preserved in non-insulin-dependent Zucker fatty diabetic rats,” American Journal of Physiology, vol. 268, no. 6, part 2, pp. H2366–H2374, 1995. View at Google Scholar · View at Scopus
  133. J. C. Frisbee and D. W. Stepp, “Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats,” American Journal of Physiology, vol. 281, no. 3, pp. H1304–H1311, 2001. View at Google Scholar · View at Scopus
  134. L. Xiang, J. S. Naik, B. L. Hodnett, and R. L. Hester, “Altered arachidonic acid metabolism impairs functional vasodilation in metabolic syndrome,” American Journal of Physiology, vol. 290, no. 1, pp. R134–R138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Xiang, J. Dearman, S. R. Abram, C. Carter, and R. L. Hester, “Insulin resistance and impaired functional vasodilation in obese Zucker rats,” American Journal of Physiology, vol. 294, no. 4, pp. H1658–H1666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. A. G. Goodwill, M. E. James, and J. C. Frisbee, “Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension,” American Journal of Physiology, vol. 295, no. 4, pp. H1522–H1528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. J. C. Frisbee, “Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome,” American Journal of Physiology, vol. 289, no. 2, pp. R307–R316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. P. Ernsberger, R. J. Koletsky, and J. E. Friedman, “Molecular pathology in the obese spontaneous hypertensive Koletsky rat: a model of Syndrome X,” Annals of the New York Academy of Sciences, vol. 892, pp. 272–288, 1999. View at Google Scholar · View at Scopus
  139. K. Takaya, Y. Ogawa, J. Hiraoka et al., “Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat,” Nature Genetics, vol. 14, no. 2, pp. 130–131, 1996. View at Google Scholar · View at Scopus
  140. J. Hiraoka, K. Hosoda, Y. Ogawa et al., “Augmentation of obese (ob) gene expression and leptin secretion in obese spontaneously hypertensive rats (Obese SHR or Koletsky rats),” Biochemical and Biophysical Research Communications, vol. 231, no. 3, pp. 582–585, 1997. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Koletsky, “Obese spontaneously hypertensive rats: a model for study of atherosclerosis,” Experimental and Molecular Pathology, vol. 19, no. 1, pp. 53–60, 1973. View at Google Scholar · View at Scopus
  142. S. S. Huang, S. A. Khosrof, R. J. Koletsky, B. A. Benetz, and P. Ernsberger, “Characterization of retinal vascular abnormalities in lean and obese spontaneously hypertensive rats,” Clinical and Experimental Pharmacology and Physiology, vol. 22, no. 1, pp. S129–S131, 1995. View at Google Scholar · View at Scopus
  143. P. Ernsberger, R. J. Koletsky, J. S. Baskin, and M. Foley, “Refeeding hypertension in obese spontaneously hypertensive rats,” Hypertension, vol. 24, no. 6, pp. 699–705, 1994. View at Google Scholar · View at Scopus
  144. P. Ernsberger, R. J. Koletsky, L. A. Collins, and J. G. Douglas, “Renal angiotensin receptor mapping in obese spontaneously hypertensive rats,” Hypertension, vol. 21, no. 6, part 2, pp. 1039–1045, 1993. View at Google Scholar · View at Scopus
  145. Y. Mendizábal, S. Llorens, and E. Nava, “Reactivity of the aorta and mesenteric resistance arteries from the obese spontaneously hypertensive rat: effects of glitazones,” American Journal of Physiology, vol. 301, no. 4, pp. H1319–H1330, 2011. View at Google Scholar
  146. S. F. O'Brien, J. D. McKendrick, M. W. Radomski, S. T. Davidge, and J. C. Russell, “Vascular wall reactivity in conductance and resistance arteries: differential effects of insulin resistance,” Canadian Journal of Physiology and Pharmacology, vol. 76, no. 1, pp. 72–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  147. C. M. Boustany-Kari, M. Gong, W. S. Akers, Z. Guo, and L. A. Cassis, “Enhanced vascular contractility and diminished coronary artery flow in rats made hypertensive from diet-induced obesity,” International Journal of Obesity, vol. 31, no. 11, pp. 1652–1659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. A. D. Dobrian, M. J. Davies, S. D. Schriver, T. J. Lauterio, and R. L. Prewitt, “Oxidative stress in a rat model of obesity-induced hypertension,” Hypertension, vol. 37, no. 2, part 2, pp. 554–560, 2001. View at Google Scholar · View at Scopus
  149. E. Jebelovszki, C. Kiraly, N. Erdei et al., “High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation,” American Journal of Physiology, vol. 294, no. 6, pp. H2558–H2564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. R. E. Haddock, T. H. Grayson, M. J. Morris, L. Howitt, P. S. Chadha, and S. L. Sandow, “Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms,” PLoS ONE, vol. 6, no. 1, Article ID e16423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. E. K. Naderali, L. C. Pickavance, J. P. H. Wilding, and G. Williams, “Diet-induced endothelial dysfunction in the rat is independent of the degree of increase in total body weight,” Clinical Science, vol. 100, no. 6, pp. 635–641, 2001. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Gil-Ortega, P. Stucchi, R. Guzmán-Ruiz et al., “Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity,” Endocrinology, vol. 151, no. 7, pp. 3299–3306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Nilsson, K. Raun, F. F. Yan, M. O. Larsen, and M. Tang-Christensen, “Laboratory animals as surrogate models of human obesity,” Acta Pharmacologica Sinica, vol. 33, no. 2, pp. 173–181, 2012. View at Google Scholar
  154. A. Mavri, P. Poredoš, D. Šuran, B. Gaborit, I. Juhan-Vague, and P. Poredoš, “Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting,” Heart and Vessels, vol. 26, no. 1, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. T. K. Chatterjee, L. L. Stoll, G. M. Denning et al., “Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding,” Circulation Research, vol. 104, no. 4, pp. 541–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. A. J. Donato, G. D. Henson, R. G. Morgan, R. A. Enz, A. E. Walker, and L. A. Lesniewski, “TNF-alpha impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity,” American Journal of Physiology, vol. 303, no. 6, pp. H672–H679, 2012. View at Google Scholar
  157. J. Ketonen, J. Shi, E. Martonen, and E. Mervaala, “Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57BL/6 mice,” Circulation Journal, vol. 74, no. 7, pp. 1479–1487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Elizalde, M. Rydén, V. Van Harmelen et al., “Expression of nitric oxide synthases in subcutaneous adipose tissue of nonobese and obese humans,” Journal of Lipid Research, vol. 41, no. 8, pp. 1244–1251, 2000. View at Google Scholar · View at Scopus
  159. L. Ma, S. Ma, H. He et al., “Perivascular fat-mediated vascular dysfunction and remodeling through the AMPK/mTOR pathway in high-fat diet-induced obese rats,” Hypertension Research, vol. 33, no. 5, pp. 446–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. K. Kimura, K. Tsuda, A. Baba et al., “Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin,” Biochemical and Biophysical Research Communications, vol. 273, no. 2, pp. 745–749, 2000. View at Publisher · View at Google Scholar · View at Scopus
  161. G. Lembo, C. Vecchione, L. Fratta et al., “Leptin induces direct vasodilation through distinct endothelial mechanisms,” Diabetes, vol. 49, no. 2, pp. 293–297, 2000. View at Google Scholar · View at Scopus
  162. C. Vecchione, A. Maffei, S. Colella et al., “Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway,” Diabetes, vol. 51, no. 1, pp. 168–173, 2002. View at Google Scholar · View at Scopus
  163. K. Matsuda, H. Teragawa, Y. Fukuda, K. Nakagawa, Y. Higashi, and K. Chayama, “Leptin causes nitric-oxide independent coronary artery vasolidation in humans,” Hypertension Research, vol. 26, no. 2, pp. 147–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. A. U. Momin, N. Melikian, A. M. Shah et al., “Leptin is an endothelial-independent vasodilator in humans with coronary artery disease: evidence for tissue specificity of leptin resistance,” European Heart Journal, vol. 27, no. 19, pp. 2294–2299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Fortuño, A. Rodríguez, J. Gómez-Ambrosi et al., “Leptin inhibits angiotensin II-induced intracellular calcium increase and vasoconstriction in the rat aorta,” Endocrinology, vol. 143, no. 9, pp. 3555–3560, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. M. T. Gentile, C. Vecchione, G. Marino et al., “Resistin impairs insulin-evoked vasodilation,” Diabetes, vol. 57, no. 3, pp. 577–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Chen, J. Jiang, J. M. Lü et al., “Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells,” American Journal of Physiology, vol. 299, no. 1, pp. H193–H201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. W. Xi, H. Satoh, H. Kase, K. Suzuki, and Y. Hattori, “Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. H. Yamawaki, N. Hara, M. Okada, and Y. Hara, “Visfatin causes endothelium-dependent relaxation in isolated blood vessels,” Biochemical and Biophysical Research Communications, vol. 383, no. 4, pp. 503–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. V. Varma, A. Yao-Borengasser, N. Rasouli et al., “Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, and inflammation,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 666–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. C. C. Yang, S. J. Deng, C. C. Hsu et al., “Visfatin regulates genes related to lipid metabolism in porcine adipocytes,” Journal of Animal Science, vol. 88, no. 10, pp. 3233–3241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. H. Zhang, Y. Park, J. Wu et al., “Role of TNF-α in vascular dysfunction,” Clinical Science, vol. 116, no. 3, pp. 219–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Hector, B. Schwarzloh, J. Goehring et al., “TNF-α alters visfatin and adiponectin levels in human fat,” Hormone and Metabolic Research, vol. 39, no. 4, pp. 250–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. D. X. Zhang, F. X. Yi, A. P. Zou, and P. L. Li, “Role of ceramide in TNF-α-induced impairment of endothelium-dependent vasorelaxation in coronary arteries,” American Journal of Physiology, vol. 283, no. 5, pp. H1785–H1794, 2002. View at Google Scholar · View at Scopus
  175. J. E. Brian and F. M. Faraci, “Tumor necrosis factor-α-induced dilatation of cerebral arterioles,” Stroke, vol. 29, no. 2, pp. 509–515, 1998. View at Google Scholar · View at Scopus
  176. D. G. Johns and R. C. Webb, “TNF-α-induced endothelium-independent vasodilation: a role for phospholipase A2-dependent ceramide signaling,” American Journal of Physiology, vol. 275, no. 5, pp. H1592–H1598, 1998. View at Google Scholar · View at Scopus
  177. S. J. Wort, M. Ito, P. C. Chou et al., “Synergistic induction of endothelin-1 by tumor necrosis factor α and interferon γ is due to enhanced NF-κB binding and histone acetylation at specific κB sites,” Journal of Biological Chemistry, vol. 284, no. 36, pp. 24297–24305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. A. R. Brasier, J. Li, and K. A. Wimbish, “Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator,” Hypertension, vol. 27, no. 4, pp. 1009–1017, 1996. View at Google Scholar · View at Scopus
  179. F. Ohkawa, U. Ikeda, K. Kawasaki, E. Kusano, M. Igarashi, and K. Shimada, “Inhibitory effect of interleukin-6 on vascular smooth muscle contraction,” American Journal of Physiology, vol. 266, no. 3, pp. H898–H902, 1994. View at Google Scholar · View at Scopus
  180. A. Minghini, L. D. Britt, and M. A. Hill, “Interleukin-1 and interleukin-6 mediated skeletal muscle arteriolar vasodilation: in vitro versus in vivo studies,” Shock, vol. 9, no. 3, pp. 210–215, 1998. View at Google Scholar · View at Scopus
  181. L. I. Schrader, D. A. Kinzenbaw, A. W. Johnson, F. M. Faraci, and S. P. Didion, “IL-6 deficiency protects against angiotensin II-induced endothelial dysfunction and hypertrophy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2576–2581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  182. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Moncada, “Adventures in vascular biology: a tale of two mediators,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1469, pp. 735–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Feletou, Y. Huang, and P. M. Vanhoutte, “Endothelium-mediated control of vascular tone: COX-1 and COX-2 products,” British Journal of Pharmacology, vol. 164, no. 3, pp. 894–912, 2011. View at Google Scholar
  185. C. Zhang, T. W. Hein, W. Wang, and L. Kuo, “Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function,” Circulation Research, vol. 92, no. 3, pp. 322–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  186. P. K. Mehta and K. K. Griendling, “Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system,” American Journal of Physiology, vol. 292, no. 1, pp. C82–C97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. S. Taddei, A. Virdis, L. Ghiadoni, and A. Salvetti, “Vascular effects of endothelin-1 in essential hypertension: relationship with cyclooxygenase-derived endothelium-dependent contracting factors and nitric oxide,” Journal of Cardiovascular Pharmacology, vol. 35, pp. S37–S40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  188. G. A. Knock, V. A. Snetkov, Y. Shaifta et al., “Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 633–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. R. J. Gryglewski, R. M. J. Palmer, and S. Moncada, “Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor,” Nature, vol. 320, no. 6061, pp. 454–456, 1986. View at Google Scholar · View at Scopus