Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2013, Article ID 409083, 14 pages
http://dx.doi.org/10.1155/2013/409083
Review Article

The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings

1Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, IDF Centre for Education, 4 Conran Smith Road, Gopalapuram, Chennai 600 086, India
2Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 4013 Congella, Durban, South Africa

Received 14 September 2012; Revised 25 December 2012; Accepted 9 January 2013

Academic Editor: Salim Yusuf

Copyright © 2013 Viswanathan Mohan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. King, R. E. Aubert, and W. H. Herman, “Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections,” Diabetes Care, vol. 21, no. 9, pp. 1414–1431, 1998. View at Google Scholar · View at Scopus
  2. G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Unwin, D. Whiting, L. Guariguata, G. Ghyoot, and D. Gan, Eds., Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 5th edition, 2011.
  4. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” The Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Danaei, M. M. Finucane, J. K. Lin et al., “National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants,” The Lancet, vol. 377, no. 9765, pp. 568–577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. M. Lawes, S. Vander Hoorn, M. R. Law, P. Elliott, S. MacMahon, and A. Rodgers, “Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels,” Journal of Hypertension, vol. 24, no. 3, pp. 413–422, 2006. View at Google Scholar · View at Scopus
  8. L. H. Opie and Y. K. Seedat, “Hypertension in sub-Saharan African populations,” Circulation, vol. 112, no. 23, pp. 3562–3568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Lago, P. P. Singh, and R. W. Nesto, “Diabetes and hypertension,” Nature Clinical Practice Endocrinology & Metabolism, vol. 3, no. 10, p. 667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. King and M. Rewers, “Diabetes in adults is now a third world problem. World Health Organization ad hoc diabetes reporting group,” Ethnicity & Disease, vol. 3, supplement, pp. S67–S74, 1993. View at Google Scholar · View at Scopus
  11. J. Oldroyd, M. Banerjee, A. Heald, and K. Cruickshank, “Diabetes and ethnic minorities,” Postgraduate Medical Journal, vol. 81, no. 958, pp. 486–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. “WHO Country and regional data on diabetes,” http://www.who.int/diabetes/facts/world_figures/en/index1.html, http://www.who.int/diabetes/facts/world_figures/en/index5.html.
  13. E. Sobngwi, F. Mauvais-Jarvis, P. Vexiau, J. C. Mbanya, and J. F. Gautier, “Diabetes in Africans. Part 1: epidemiology and clinical specificities,” Diabetes & Metabolism, vol. 27, no. 6, pp. 628–634, 2001. View at Google Scholar
  14. D. L. Christensen, H. Friis, D. L. Mwaniki et al., “Prevalence of glucose intolerance and associated risk factors in rural and urban populations of different ethnic groups in Kenya,” Diabetes Research and Clinical Practice, vol. 84, no. 3, pp. 303–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hussain, M. A. Rahim, A. K. A. Khant, S. M. K. Ali, and S. Vaaler, “Type 2 diabetes in rural and urban population: diverse prevalence and associated risk factors in Bangladesh,” Diabetic Medicine, vol. 22, no. 7, pp. 931–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Anjana, R. Pradeepa, M. Deepa et al., “Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study,” Diabetologia, vol. 54, no. 12, pp. 3022–3027, 2011. View at Publisher · View at Google Scholar
  17. International Institute for Population Sciences (IIPS) and Macro International, “National Family Health Survey (NFHS-3), 2005-06: India: Volume I.Mumbai: IIPS,” 2007.
  18. Y. K. Seedat, “Diabetes mellitus in South African Indians,” British Journal of Diabetes & Vascular Disease, vol. 5, no. 5, pp. 249–251, 2005. View at Google Scholar · View at Scopus
  19. D. G. McLarty, C. Pollitt, and A. B. M. Swai, “Diabetes in Africa,” Diabetic Medicine, vol. 7, no. 8, pp. 670–684, 1990. View at Google Scholar · View at Scopus
  20. J. C. N. Mbanya, A. A. Motala, E. Sobngwi, F. K. Assah, and S. T. Enoru, “Diabetes in sub-Saharan Africa,” The Lancet, vol. 375, no. 9733, pp. 2254–2266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Hall, R. W. Thomsen, O. Henriksen, and N. Lohse, “Diabetes in Sub Saharan Africa 1999–2011: epidemiology and public health implications. A systematic review,” BMC Public Health, vol. 11, p. 564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Fisch, E. Pichard, T. Prazuck, H. Leblanc, Y. Sidibe, and G. Brücker, “Prevalence and risk factors of diabetes mellitus in the rural region of Mali (West Africa): a practical approach,” Diabetologia, vol. 30, no. 11, pp. 859–862, 1987. View at Google Scholar · View at Scopus
  23. N. M. Baldé, I. Diallo, M. D. Baldé et al., “Diabetes andimpaired fasting glucose inrural andurban populations inFuta Jallon (Guinea): prevalence andassociated risk factors,” Diabetes and Metabolism, vol. 33, no. 2, pp. 114–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. O. O. Oladapo, L. Salako, O. Sodiq, K. Shoyinka, K. Adedapo, and A. O. Falase, “A prevalence of cardiometabolic risk factors among a rural Yoruba south-western Nigerian population: a population-based survey,” Cardiovascular Journal of Africa, vol. 21, no. 1, pp. 26–31, 2010. View at Google Scholar · View at Scopus
  25. T. J. Aspray, F. Mugusi, S. Rashid et al., “Rural and urban differences in diabetes prevalence in Tanzania: the role of obesity, physical inactivity and urban living,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 6, pp. 637–644, 2000. View at Google Scholar · View at Scopus
  26. W. Mathenge, A. Foster, and H. Kuper, “Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: a population-based survey,” BMC Public Health, vol. 10, article 569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Maher, L. Waswa, K. Baisley, A. Karabarinde, N. Unwin, and H. Grosskurth, “Distribution of hyperglycaemia and related cardiovascular disease risk factors in low-income countries: a cross-sectional population-based survey in rural Uganda,” International Journal of Epidemiology, vol. 40, no. 1, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Levitt, J. M. Katzenellenbogen, D. Bradshaw, M. N. Hoffman, and F. Bonnici, “The prevalence and identification of risk factors for NIDDM in urban Africans in Cape Town, South Africa,” Diabetes Care, vol. 16, no. 4, pp. 601–607, 1993. View at Google Scholar · View at Scopus
  29. A. A. Motala, T. Esterhuizen, E. Gouws, F. J. Pirie, and A. K. Mahomed, “Diabetes and other disorders of glycemia in a rural South African community: prevalence and associated risk factors,” Diabetes Care, vol. 31, no. 9, pp. 1783–1788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Sobngwi, J. C. Mbanya, N. C. Unwin et al., “Physical activity and its relationship with obesity, hypertension and diabetes in urban and rural Cameroon,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 7, pp. 1009–1016, 2002. View at Google Scholar
  31. MOH, Cameroon Burden of Diabetes Project (Cambod): Baseline Survey Report, Ministry of Health, Cambodia, Cameroon, 2004.
  32. J. B. Echouffo-Tcheugui, A. Dzudie, M. E. Epacka et al., “Prevalence and determinants of undiagnosed diabetes in an urban sub-Saharan African population,” Prim Care Diabetes, vol. 6, no. 3, pp. 229–234, 2012. View at Publisher · View at Google Scholar
  33. K. Okrainec, D. K. Banerjee, and M. J. Eisenberg, “Coronary artery disease in the developing world,” American Heart Journal, vol. 148, no. 1, pp. 7–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Davies, L. Smeeth, and E. M. D. Grundy, “Contribution of changes in incidence and mortality to trends in the prevalence of coronary heart disease in the UK: 1996–2005,” European Heart Journal, vol. 28, no. 17, pp. 2142–2147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Laatikainen, J. Critchley, E. Vartiainen, V. Salomaa, M. Ketonen, and S. Capewell, “Explaining the decline in coronary heart disease mortality in Finland between 1982 and 1997,” American Journal of Epidemiology, vol. 162, no. 8, pp. 764–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Gupta, “Trends in hypertesnion epidemiology in India,” Journal of Human Hypertension, vol. 18, pp. 73–78, 2004. View at Google Scholar
  37. V. Mohan, M. Deepa, S. Farooq, M. Datta, and R. Deepa, “Prevalence, awareness and control of hypertension in Chennai: the Chennai Urban Rural Epidemiology Study (CURES-52),” Journal of Association of Physicians of India, vol. 55, pp. 326–332, 2007. View at Google Scholar · View at Scopus
  38. P. Suriyawongpaisal, “Cardiovascular risk factor levels in urban and rural Thailand: the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA),” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 10, no. 4, pp. 249–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Sayeed, A. Banu, J. A. Haq, P. A. Khanam, H. Mahtab, and A. K. Azad Khan, “Prevalence of hypertension in Bangladesh: effect of socioeconomic risk factor on difference between rural and urban community,” Bangladesh Medical Research Council Bulletin, vol. 28, no. 1, pp. 7–18, 2002. View at Google Scholar · View at Scopus
  40. Global Health Observatory (GHO), “Raised Blood pressure,” 2012, http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/index.html.
  41. Y. K. Seedat, “Hypertension in developing nations in sub-Saharan Africa,” Journal of Human Hypertension, vol. 14, no. 10-11, pp. 739–747, 2000. View at Google Scholar · View at Scopus
  42. R. Edwards, N. Unwin, F. Mugusi et al., “Hypertension prevalence and care in an urban and rural area of Tanzania,” Journal of Hypertension, vol. 18, no. 2, pp. 145–152, 2000. View at Google Scholar · View at Scopus
  43. K. Steyn, T. A. Gaziano, D. Bradshaw, R. Laubscher, and J. Fourie, “Hypertension in South African adults: results from the demographic and health survey, 1998,” Journal of Hypertension, vol. 19, no. 10, pp. 1717–1725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Norman, T. Gaziano, R. Laubsher, K. Steyn, and D. Bradshaw, “Estimating the burden of disease attributable to high blood pressure in South Africa in 2000,” South African Medical Journal, vol. 97, no. 8, pp. 692–698, 2007. View at Google Scholar · View at Scopus
  45. Ministry of Public Health, Thailand Health Profile 2005-2006, Bureau of Policy and strategy, Ministry of Public Health, Nonthaburi, Thailand, 2007.
  46. J. R. Sowers, M. Epstein, and E. D. Frohlich, “Diabetes, hypertension, and cardiovascular disease an update,” Hypertension, vol. 37, no. 4, pp. 1053–1059, 2001. View at Google Scholar · View at Scopus
  47. C. Arauz-Pacheco, M. A. Parrott, and P. Raskin, “The treatment of hypertension in adult patients with diabetes,” Diabetes Care, vol. 25, no. 1, pp. 134–147, 2002. View at Google Scholar · View at Scopus
  48. R. Klein, B. E. K. Klein, K. E. Lee, K. J. Cruickshanks, and S. E. Moss, “The incidence of hypertension in insulin-dependent diabetes,” Archives of Internal Medicine, vol. 156, no. 6, pp. 622–627, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Turner, I. Stratton, V. Fright, R. Holman, S. Manley, and C. Cull, “Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications,” Journal of Hypertension, vol. 11, no. 3, pp. 309–317, 1993. View at Google Scholar · View at Scopus
  50. M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, and C. Nejjari, “Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM Study),” The Pan African Medical Journal, vol. 11, p. 52, 2012. View at Google Scholar
  51. B. A. Broussard, S. E. Valway, S. Kaufman, S. Beaver, and D. Gohdes, “Clinical hypertension and its interaction with diabetes among American Indians and Alaska Natives: estimated rates from ambulatory care data,” Diabetes Care, vol. 16, no. 1, pp. 292–296, 1993. View at Google Scholar · View at Scopus
  52. F. P. Cappuccio, A. Barbato, and S. M. Kerry, “Hypertension, diabetes and cardiovascular risk in ethnic minorities in the UK,” British Journal of Diabetes & Vascular Disease, vol. 3, no. 4, pp. 286–293, 2003. View at Google Scholar · View at Scopus
  53. J. R. Sowers and M. Epstein, “Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update,” Hypertension, vol. 26, no. 6 I, pp. 869–879, 1995. View at Google Scholar · View at Scopus
  54. J. Stamler, O. Vaccaro, J. D. Neaton, and D. Wentworth, “Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial,” Diabetes Care, vol. 16, no. 2, pp. 434–444, 1993. View at Google Scholar · View at Scopus
  55. J. D. Curb, S. L. Pressel, J. A. Cutler et al., “Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension,” The Journal of the American Medical Association, vol. 276, no. 23, pp. 1886–1892, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Grossman and F. Messerli, “Hypertension and diabetes,” Advances in Cardiology, vol. 45, pp. 82–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Tuomilehto, D. Rastenyte, W. H. Birkenhager et al., “Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension,” The New England Journal of Medicine, vol. 340, no. 9, pp. 677–684, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. United Kingdom Prospective Diabetes Study Group, “Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38,” BMJ, vol. 317, no. 7160, pp. 703–713, 1998. View at Google Scholar
  59. Hypertension in Diabetes Study (HDS): II, “Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients,” Journal of Hypertension, vol. 11, pp. 319–325, 1993. View at Google Scholar
  60. R. B. Singh, R. Beegom, V. Rastogi, S. S. Rastogi, and V. Madhu, “Clinical characteristics and hypertension among known patients of non-insulin dependent diabetes mellitus in North and South Indians,” Journal of the Diabetic Association of India, vol. 36, pp. 45–50, 1996. View at Google Scholar
  61. S. Jain and J. C. Patel, “Diabetes and hypertension,” Journal of the Diabetic Association of India, vol. 23, pp. 83–86, 1983. View at Google Scholar
  62. S. R. Joshi, B. Saboo, M. Vadivale et al., “Prevalence of diagnosed and undiagnosed diabetes and hypertension in India–results from the Screening India's Twin Epidemic (SITE) study,” Diabetes Technology and Therapeutics, vol. 14, no. 1, pp. 8–15, 2012. View at Publisher · View at Google Scholar
  63. P. Bunnag, N. Plengvidhya, C. Deerochanawong et al., “Thailand diabetes registry project: prevalence of hypertension, treatment and control of blood pressure in hypertensive adults with type 2 diabetes,” Journal of the Medical Association of Thailand, vol. 89, no. 1, pp. S72–S77, 2006. View at Google Scholar · View at Scopus
  64. H. S. Lee, S. S. Lee, I. Y. Hwang et al., “Prevalence, awareness, treatment and control of hypertension in adults with diagnosed diabetes: the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV),” Journal of Human Hypertension, 2012. View at Publisher · View at Google Scholar
  65. U. K. Shrestha, D. L. Singh, and M. D. Bhattarai, “The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal,” Diabetic Medicine, vol. 23, no. 10, pp. 1130–1135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Ducorps, B. Bauduceau, H. Mayaudon, E. Sonnet, L. Groussin, and C. Castagné, “Prevalence of hypertension in a Black African diabetic population,” Archives des Maladies du Coeur et des Vaisseaux, vol. 89, no. 8, pp. 1069–1073, 1996. View at Google Scholar · View at Scopus
  67. C. F. Otieno, V. Vaghela, F. W. Mwendwa, J. K. Kayima, and E. N. Ogola, “Cardiovascular risk factors in patients with type 2 diabetes mellitus in Kenya: levels of control attained at the outpatient diabetic Clinic of Kenyatta National Hospital, Nairobi,” East African Medical Journal, vol. 82, no. 12, pp. S184–S190, 2005. View at Google Scholar · View at Scopus
  68. O. O. Ogunleye, S. O. Ogundele, J. O. Akinyemi, and A. O. Ogbera, “Clustering of hypertension, diabetes mellitus and dyslipidemia in a Nigerian population: a cross sectional study,” African Journal of Medicine & Medical Sciences, vol. 41, pp. 191–195, 2012. View at Google Scholar
  69. M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, and C. Nejjari, “Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM Study),” The Pan African Medical Journal, vol. 11, p. 52, 2012. View at Google Scholar
  70. B. C. Unadike, A. Eregie, and A. E. Ohwovoriole, “Prevalence of hypertension amongst persons with diabetes mellitus in Benin City, Nigeria,” Nigerian Journal of Clinical Practice, vol. 14, pp. 300–302, 2011. View at Google Scholar
  71. R. Beaglehole, J. Epping-Jordan, V. Patel et al., “Improving the prevention and management of chronic disease in low-income and middle-income countries: a priority for primary health care,” The Lancet, vol. 372, no. 9642, pp. 940–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. T. Jamison, J. G. Breman, A. R. Measham et al., Eds., Disease Control Priorities in Developing Countries, World Bank and Oxford University Press, Washington, DC, USA, 2nd edition, 2006.
  73. S. MacMahon, M. H. Alderman, L. H. Lindholm, L. Liu, R. A. Sanchez, and Y. K. Seedat, “Blood-pressure-related disease is a global health priority,” The Lancet, vol. 371, no. 9623, pp. 1480–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Lemogoum, Y. K. Seedat, A. F. B. Mabadeje et al., “Recommendations for prevention, diagnosis and management of hypertension and cardiovascular risk factors in sub-Saharan Africa,” Journal of Hypertension, vol. 21, no. 11, pp. 1993–2000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Deepa, C. S. Shanthirani, R. Pradeepa, and V. Mohan, “Is the “rule of halves” in hypertension still valid?—Evidence from the Chennai Urban Population Study,” The Journal of the Association of Physicians of India, vol. 51, pp. 153–157, 2003. View at Google Scholar
  76. I. Ranjit Unnikrishnan, R. M. Anjana, and V. Mohan, “Importance of controlling diabetes early—the concept of metabolic memory, legacy effect and the case for early insulinisation,” Journal of Association of Physicians of India, vol. 59, supplement, pp. 8–12, 2011. View at Google Scholar
  77. S. Ebrahim, “Chronic diseases and calls to action,” International Journal of Epidemiology, vol. 37, no. 2, pp. 225–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Li, Y. Hu, W. Yang et al., “Effects of insulin resistance and insulin secretion on the efficacy of interventions to retard development of type 2 diabetes mellitus: the DA Qing IGT and Diabetes Study,” Diabetes Research and Clinical Practice, vol. 58, no. 3, pp. 193–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Tuomilehto, J. Lindström, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Ramachandran, C. Snehalatha, S. Mary, B. Mukesh, A. D. Bhaskar, and V. Vijay, “The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1),” Diabetologia, vol. 49, no. 2, pp. 289–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Hu, N. C. Barengo, J. Tuomilehto, T. A. Lakka, A. Nissinen, and P. Jousilahti, “Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland,” Hypertension, vol. 43, no. 1, pp. 25–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. The Trials of Hypertension Prevention Collaborative Research Group, “The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the trials of hypertension prevention, phase I,” The Journal of the American Medical Association, vol. 267, no. 9, pp. 1213–1220, 1992. View at Google Scholar
  84. J. A. Cutler, “Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the trials of hypertension prevention, phase II,” Archives of Internal Medicine, vol. 157, no. 6, pp. 657–667, 1997. View at Google Scholar · View at Scopus
  85. L. J. Appel, “Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial,” The Journal of the American Medical Association, vol. 289, no. 16, pp. 2083–2093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993. View at Google Scholar
  87. R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Shichiri, H. Kishikawa, Y. Ohkubo, and N. Wake, “Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients,” Diabetes Care, vol. 23, no. 2, pp. B21–B29, 2000. View at Google Scholar · View at Scopus
  89. P. Gæde, H. Lund-Andersen, H. H. Parving, and O. Pedersen, “Effect of a multifactorial intervention on mortality in type 2 diabetes,” The New England Journal of Medicine, vol. 358, no. 6, pp. 580–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. The Action to Control Cardiovascular Risk in Diabetes Study Group, “Effects of intensive glucose lowering in type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2545–2559, 2008. View at Google Scholar
  91. American Diabetes Association, “Standards of medical care in diabetes-2008,” Diabetes Care, vol. 31, supplement 1, pp. S12–S54, 2008. View at Google Scholar
  92. J. S. Skyler, R. Bergenstal, R. O. Bonow et al., “Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association,” Diabetes Care, vol. 32, no. 1, pp. 187–192, 2009. View at Publisher · View at Google Scholar
  93. J. B. Buse, H. N. Ginsberg, G. L. Bakris et al., “Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association,” Circulation, vol. 115, no. 1, pp. 114–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. A. Mazzuca, F. Vinicor, R. M. Einterz, W. M. Tierney, J. A. Norton, and L. A. Kalasinski, “Effects of the clinical environment on physicians' response to postgraduate medical education,” American Educational Research Journal, vol. 27, no. 3, pp. 473–488, 1990. View at Google Scholar
  95. E. M. Benjamin, M. S. Schneider, and K. T. Hinchey, “Implementing practice guidelines for diabetes care using problem-based learning: a prospective controlled trial using firm systems,” Diabetes Care, vol. 22, no. 10, pp. 1672–1678, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Litaker, L. C. Mion, L. Planavsky, C. Kippes, N. Mehta, and J. Frolkis, “Physician-nurse practitioner teams in chronic disease management: the impact on costs, clinical effectiveness, and patients' perception of care,” Journal of Interprofessional Care, vol. 17, no. 3, pp. 223–237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Jovanovic, “Closing the gap: effect of diabetes case management on glycemic control among low-income ethnic minority populations. The California Medi-Cal type 2 diabetes study,” Diabetes Care, vol. 27, no. 1, pp. 95–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. H. M. Choe, S. Mitrovich, D. Dubay, R. A. Hayward, S. L. Krein, and S. Vijan, “Proactive case management of high-risk patients with type 2 diabetes mellitus by a clinical pharmacist: a randomized controlled trial,” American Journal of Managed Care, vol. 11, no. 4, pp. 253–260, 2005. View at Google Scholar · View at Scopus
  99. R. A. Gabbay, I. Lendel, T. M. Saleem et al., “Nurse case management improves blood pressure, emotional distress and diabetes complication screening,” Diabetes Research and Clinical Practice, vol. 71, no. 1, pp. 28–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. Pan American Health Organization, Veracruz Project for the Improvement of Diabetes Care (VIDA): Final Report, PAHO, Washington, DC, USA, 2007.
  101. T. L. Gary, M. Batts-Turner, H. C. Yeh et al., “The effects of a nurse case manager and a community health worker team on diabetic control, emergency department visits, and hospitalizations among urban African Americans with type 2 diabetes mellitus: a randomized controlled trial,” Archives of Internal Medicine, vol. 169, no. 19, pp. 1788–1794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Coleman, G. Gill, and D. Wilkinson, “Noncommunicable disease management in resource-poor settings: a primary care model from rural South Africa,” Bulletin of the World Health Organization, vol. 76, no. 6, pp. 633–640, 1998. View at Google Scholar · View at Scopus
  103. A. Pal, V. W. A. Mbarika, F. Cobb-Payton, P. Datta, and S. McCoy, “Telemedicine diffusion in a developing country: the case of India (March 2004),” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 1, pp. 59–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Geissbuhler, O. Ly, C. Lovis, and J. F. L'Haire, “Telemedicine in Western Africa: lessons learned from a pilot project in Mali, perspectives and recommendations,” AMIA. Annual Symposium Proceedings, pp. 249–253, 2003. View at Google Scholar · View at Scopus
  105. C. O. Bagayoko, H. Müller, and A. Geissbuhler, “Assessment of Internet-based tele-medicine in Africa (the RAFT project),” Computerized Medical Imaging and Graphics, vol. 30, no. 6-7, pp. 407–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. V. T. Bai, V. Murali, R. Kim, and S. K. Srivatsa, “Teleophthalmology-based rural eye care in India,” Telemedicine Journal and e-Health, vol. 13, no. 3, pp. 313–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. V. Prathiba and M. Rema, “Teleophthalmology: a model for eye care delivery in rural and underserved areas of India,” International Journal of Family Medicine, vol. 2011, Article ID 683267, 4 pages, 2011. View at Publisher · View at Google Scholar
  108. V. Mohan, M. Deepa, R. Pradeepa et al., “Prevention of diabetes in rural India with a telemedicine intervention,” Journal of Diabetes Science and Technology, vol. 6, no. 6, pp. 1355–1364, 2012. View at Google Scholar
  109. V. Patel, S. Chatterji, D. Chisholm et al., “Chronic diseases and injuries in India,” The Lancet, vol. 377, no. 9763, pp. 413–428, 2011. View at Publisher · View at Google Scholar
  110. A. Kapur, “Economic analysis of diabetes care,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 473–482, 2007. View at Google Scholar · View at Scopus
  111. R. Rodrigo and S. Rajapakse, “Current Status of HIV/AIDS in South Asia,” Journal of Global Infectious Diseases, vol. 1, pp. 93–101, 2009. View at Google Scholar
  112. J. van Olmen, F. Schellevis, W. Van Damme, G. Kegels, and F. Rasschaert, “Management of chronic diseases in sub-Saharan Africa: cross-fertilisation between HIV/AIDS and diabetes care,” Journal of Tropical Medicine, vol. 2012, Article ID 349312, 10 pages, 2012. View at Publisher · View at Google Scholar
  113. R. Geneau and G. Hallen, “Toward a systemic research agenda for addressing the joint epidemics of HIV/AIDS and non communicable diseases,” AIDS, vol. 26, supplement 1, pp. S7–S10, 2012. View at Google Scholar
  114. S. O. Oti, “HIV and non communicable diseases: a case for health system building,” Current Opinion in HIV and AIDS, vol. 8, pp. 65–69, 2013. View at Google Scholar
  115. S. M. Tollman, K. Kahn, B. Sartorius, M. A. Collinson, S. J. Clark, and M. L. Garenne, “Implications of mortality transition for primary health care in rural South Africa: a population-based surveillance study,” The Lancet, vol. 372, no. 9642, pp. 893–901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Janssens, W. Van Damme, B. Raleigh et al., “Offering integrated care for HIV/AIDS, diabetes and hypertension within chronic disease clinics in Cambodia,” Bulletin of the World Health Organization, vol. 85, no. 11, pp. 880–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. World Health Organization, “Innovative care for chronic conditions: building blocks for action: global report,” 2002, http://www.who.int/chp/knowledge/publications/iccc_ch3.pdf.
  118. J. E. Epping-Jordan, S. D. Pruitt, R. Bengoa, and E. H. Wagner, “Improving the quality of health care for chronic conditions,” Quality and Safety in Health Care, vol. 13, no. 4, pp. 299–305, 2004. View at Publisher · View at Google Scholar · View at Scopus