International Journal of Inflammation
 Journal metrics
See full report
Acceptance rate28%
Submission to final decision66 days
Acceptance to publication21 days
CiteScore6.600
Journal Citation Indicator0.530
Impact Factor-

The Association of Complements, TGF-β, and IL-6 with Disease Activity, Renal Damage, and Hematological Activity in Patients with Naïve SLE

Read the full article

 Journal profile

International Journal of Inflammation publishes papers on the molecular basis, cell biology and pharmacology of inflammation, including acute/chronic inflammation and the cellular processes/molecular mechanisms involved in inflammatory responses.

 Editor spotlight

International Journal of Inflammation maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Review Article

OMICS Approaches Evaluating Keloid and Hypertrophic Scars

Abnormal scar formation during wound healing can result in keloid and hypertrophic scars, which is a major global health challenge. Such abnormal scars can cause significant physiological pain and psychological distress and become a financial burden. Due to the biological complexity of scar formation, the pathogenesis of such scars and how to prevent them from forming remains elusive. In this review paper, we delve into the world of “omics” approaches to study abnormal scars and provide examples of genomics, transcriptomics, proteomics, epigenomics, and metabolomics. The benefits of “omics” approaches are that they allow for high-throughput studies and the analysis of 100s to 1000s of genes and proteins with the accumulation of large quantities of data. Currently in the field, there is a lack of “omics” review articles describing pathological scars. In this review, we summarize genome-wide linkage analysis, genome-wide association studies, and microarray data to name a few omics technologies. Such data can provide novel insights into different molecular pathways and identify novel factors which may not be captured through small-scale laboratory techniques.

Review Article

CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance

Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.

Research Article

Differentially Expressed Genes Study Shown Potential for BCG Stimulation in Reducing the Severity of COVID-19

The incidence of COVID-19 infection and death is known to be lower in tuberculosis (TB) endemic countries than in nonendemic countries. The Bacillus Calmette-Guerin (BCG) vaccination, which is commonly administered in TB endemic countries, was previously reported to have a nonspecific protective effect against several infections, including COVID-19. In this study, we used a differentially expressed genes (DEG) approach to analyze the genes modulated by BCG vaccination and COVID-19 infection. The Gene Expression Omnibus (GEO) database was used to select a COVID-19 gene expression data set with GSE164805, GSE14408, and GSE58636, and DEG in each data set were identified using the GEO2R online tools and selected using the adjusted value (padj) 0.05 criteria. The protein-protein interaction (PPI) network was constructed from DEGs with the same trend of expression (upregulation or downregulation) using STRING version 11. The PPI network was performed by using the highest confidence number (0.9). DEGs that have a high-trust network were collected and functional cluster analysis of biological processes from Gene Ontology (GO), pathway analysis from the Human KEGG pathway, and COVID-19-related gene analysis was carried out using the Enrichr database. We found that either BCG or tuberculin increased the expression of several genes related to hyperinflammation, such as CCL3, CCL4, CSF2, IL1B, and LTA. In severe COVID-19, these genes were downregulated. This leads to the hypothesis that revaccination may have a protective effect against the severity of COVID-19 by reducing the hyperinflammatory status.

Review Article

Fundamentals of Breast Implant Illness and Device Imaging

The past six decades of silicone breast implant history encompass manufacturing secrecy, regulatory laxity, inadequate informed consent, clever advertising, overly simplistic research methodology, diverse and controversial opinions, changing social patterns, safety issues, information ambiguity, speculation, and deception. This review addresses the verifiable clinical, radiological, and pathological aspects of these devices, particularly with regard to silicone bleeding. This information can favorably assist practitioners and radiologists facing diagnostic challenges encountered in patients with silicone breast implants.

Research Article

Antitumor Activities of Aqueous Cinnamon Extract on 5637 Cell Line of Bladder Cancer through Glycolytic Pathway

Background. Pharmacotherapy with medicinal plants is a promising approach to treat cancer. Cinnamon is a medicinal plant whose properties have been proven in various fields of medical sciences. Among its biological activities, its antioxidant and antiviral effects can be mentioned. In this study, the antitumor effects of Cinnamon with a focus on glucose metabolism in bladder cancer carcinoma cell-line 5637 were investigated. Methods. Aqueous extract of Cinnamon was prepared from Cinnamon bark. Bladder cancer 5637cell line were treated with different concentrations of aqueous extract of Cinnamon. MTT was used to evaluate cell viability at 24, 48, and 72 h. The concentration of 1.25, 2.50, and 5 mg/ml was used. Apoptosis was assessed with Hochest33258 staining. For evaluating of aqueous extract of Cinnamon effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor1 (HSF1), and lactate dehydrogenase A (LDHA), as well as protein levels of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production, were measured. Results. Aqueous extract of Cinnamon significantly decreased ErbB2, HSF1, and LDHA gene expression and also decreased the protein level of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production dose-dependently (). Conclusion. Our finding showed that the aqueous extract of Cinnamon can inhibit proliferation in 5637 cells by inhibition of glycolysis and induction of apoptosis.

Research Article

Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model

Background. The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. Method. This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. Results. Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (), while both hepatocyte growth factor () and follistatin () were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; ) and fibronectin (), but increased collagen IV () was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β () and fibronectin (). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion. Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.

International Journal of Inflammation
 Journal metrics
See full report
Acceptance rate28%
Submission to final decision66 days
Acceptance to publication21 days
CiteScore6.600
Journal Citation Indicator0.530
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.