Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2011, Article ID 263870, 15 pages
http://dx.doi.org/10.4061/2011/263870
Review Article

Hemodynamics and Mechanobiology of Aortic Valve Inflammation and Calcification

1Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
2Department of Aerospace and Mechanical Engineering, University of Notre Dame, 143 Multidisciplinary Research Building, Notre Dame, IN 46556-5637, USA
3The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 1121, Atlanta, GA 30332-0535, USA

Received 18 March 2011; Accepted 29 April 2011

Academic Editor: Elena Aikawa

Copyright © 2011 Kartik Balachandran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Otto, “Evaluation and management of chronic mitral regurgitation,” New England Journal of Medicine, vol. 345, no. 10, pp. 740–746, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. H. Reul and N. Talukder, “Heart valve mechanics,” in Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles, N. H. C. Hwang, D. R. Gross, and D. J. Patel, Eds., pp. 527–564, University Park Press, Baltimore, Md, USA, 1979. View at Google Scholar
  3. M. Thubrikar, The Aortic Valve, CRC Press, Boca Raton, Fla, USA, 1990.
  4. C. H. Yap, N. Saikrishnan, G. Tamilselvan, and A. P. Yoganathan, “Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet,” Biomechanics and Modeling in Mechanobiology. View at Publisher · View at Google Scholar · View at PubMed
  5. C. H. Yap, N. Saikrishnan, and A. P. Yoganathan, “Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet,” Biomechanics and Modeling in Mechanobiology. View at Publisher · View at Google Scholar · View at PubMed
  6. A. P. Yoganathan, “Fluid mechanics of aortic stenosis,” European Heart Journal, vol. 9, supplement E, pp. 13–17, 1988. View at Google Scholar
  7. J. Corden, T. David, and J. Fisher, “In vitro determination of the curvatures and bending strains acting on the leaflets of polyurethane trileaflet heart valves during leaflet motion,” Proceedings of the Institution of Mechanical Engineers, vol. 209, no. 4, pp. 243–253, 1995. View at Google Scholar
  8. C. H. Yap, H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan, “Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions,” American Journal of Physiology, vol. 298, no. 2, pp. H395–H405, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. P. J. Kilner, G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore, “Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping,” Circulation, vol. 88, no. 5, part 1, pp. 2235–2247, 1993. View at Google Scholar
  10. H. W. Sung and A. P. Yoganathan, “Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies,” Journal of Biomechanics, vol. 23, no. 3, pp. 201–214, 1990. View at Publisher · View at Google Scholar
  11. M. H. Yacoub and L. H. Cohn, “Novel approaches to cardiac valve repair: from structure to function: part I,” Circulation, vol. 109, no. 8, pp. 942–950, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. I. El-Hamamsy, K. Balachandran, M. H. Yacoub et al., “Endothelium-dependent regulation of the mechanical properties of aortic valve cusps,” Journal of the American College of Cardiology, vol. 53, no. 16, pp. 1448–1455, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. A. H. Chester, “Endothelin-1 and the aortic valve,” Current Vascular Pharmacology, vol. 3, no. 4, pp. 353–357, 2005. View at Publisher · View at Google Scholar
  14. A. H. Chester, M. Misfeld, H. H. Sievers, and M. H. Yacoub, “Influence of 5-hydroxytryptamine on aortic valve competence in vitro,” Journal of Heart Valve Disease, vol. 10, no. 6, pp. 822–826, 2001. View at Google Scholar
  15. A. H. Chester, M. Misfeld, and M. H. Yacoub, “Receptor-mediated contraction of aortic valve leaflets,” Journal of Heart Valve Disease, vol. 9, no. 2, pp. 250–255, 2000. View at Google Scholar
  16. Cataloglu, Phillip L. Gould, and Richard E. Clark, “Refined stress analysis of human aortic heart valves,” Journal of the Engineering Mechanics Division, vol. 102, no. 1, pp. 135–150, 1976. View at Google Scholar
  17. M. W. Weston, D. V. LaBorde, and A. P. Yoganathan, “Estimation of the shear stress on the surface of an aortic valve leaflet,” Annals of Biomedical Engineering, vol. 27, no. 4, pp. 572–579, 1999. View at Google Scholar
  18. C. L. Ives, S. G. Eskin, and L. V. McIntire, “Mechanical effects on endothelial cell morphology: in vitro assessment,” In Vitro Cellular & Developmental Biology, vol. 22, no. 9, pp. 500–507, 1986. View at Google Scholar
  19. J. T. Butcher, A. M. Penrod, A. J. García, and R. M. Nerem, “Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1429–1434, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. A. J. Wong, T. D. Pollard, and I. M. Herman, “Actin filament stress fibers in vascular endothelial cells in vivo,” Science, vol. 219, no. 4586, pp. 867–869, 1983. View at Google Scholar
  21. D. J. Wheatly, J. Fisher, and I. J. Reece, “Primary tissue failure in pericardial heart valves,” Journal of Thoracic and Cardiovascular Surgery, vol. 94, no. 3, pp. 367–374, 1987. View at Google Scholar
  22. M. Thubrikar, L. P. Bosher, and S. P. Nolan, “The mechanism of opening of the aortic valve,” Journal of Thoracic and Cardiovascular Surgery, vol. 77, no. 6, pp. 863–870, 1979. View at Google Scholar
  23. M. Thubrikar, S. P. Nolan, L. P. Bosher, and J. D. Deck, “The cyclic changes and structure of the base of the aortic valve,” American Heart Journal, vol. 99, no. 2, pp. 217–224, 1980. View at Google Scholar
  24. M. J. Thubrikar, S. P. Nolan, J. Aouad, and J. D. Deck, “Stress sharing between the sinus and leaflets of canine aortic valve,” Annals of Thoracic Surgery, vol. 42, no. 4, pp. 434–440, 1986. View at Google Scholar
  25. G. W. Christie and B. G. Barratt-Boyes, “Age-dependent changes in the radial stretch of human aortic valve leaflets determined by biaxial testing,” Annals of Thoracic Surgery, vol. 60, supplement 2, pp. S156–S159, 1995. View at Google Scholar
  26. K. T. Weber, Y. Sun, L. C. Katwa, J. P. M. Cleutjens, and G. Zhou, “Connective tissue and repair in the heart. Potential regulatory mechanisms,” Annals of the New York Academy of Sciences, vol. 752, pp. 286–299, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. P. J. Schneider and J. D. Deck, “Tissue and cell renewal in the natural aortic valve of rats: an autoradiographic study,” Cardiovascular Research, vol. 15, no. 4, pp. 181–189, 1981. View at Google Scholar · View at Scopus
  28. I. E. M. G. Willems, M. G. Havenith, J. F. M. Smits, and M. J. A. P. Daemen, “Structural alterations in heart valves during left ventricular pressure overload in the rat,” Laboratory Investigation, vol. 71, no. 1, pp. 127–133, 1994. View at Google Scholar · View at Scopus
  29. M. Chaput, M. D. Handschumacher, F. Tournoux et al., “Mitral leaflet adaptation to ventricular remodeling occurrence and adequacy in patients with functional mitral regurgitation,” Circulation, vol. 118, no. 8, pp. 845–852, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. P. Dal-Bianco, E. Aikawa, J. Bischoff et al., “Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation,” Circulation, vol. 120, no. 4, pp. 334–342, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. C. A. Simmons, G. R. Grant, E. Manduchi, and P. F. Davies, “Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves,” Circulation Research, vol. 96, no. 7, pp. 792–799, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. D. W. Quick, K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran, “Collagen synthesis is upregulated in mitral valves subjected to altered stress,” ASAIO Journal, vol. 43, no. 3, pp. 181–186, 1997. View at Google Scholar · View at Scopus
  33. B. F. Stewart, D. Siscovick, B. K. Lind et al., “Clinical factors associated with calcific aortic valve disease,” Journal of the American College of Cardiology, vol. 29, no. 3, pp. 630–634, 1997. View at Publisher · View at Google Scholar
  34. E. R. Mohler III, F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan, “Bone formation and inflammation in cardiac valves,” Circulation, vol. 103, no. 11, pp. 1522–1528, 2001. View at Google Scholar · View at Scopus
  35. Y. Agmon, B. K. Khandheria, I. Meissner et al., “Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study,” Journal of the American College of Cardiology, vol. 38, no. 3, pp. 827–834, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Boon, E. Cheriex, J. Lodder, and F. Kessels, “Cardiac valve calcification: characteristics of patients with calcification of the mitral annulus or aortic valve,” Heart, vol. 78, no. 5, pp. 472–474, 1997. View at Google Scholar · View at Scopus
  37. F. S. Agno, M. Chinali, J. N. Bella et al., “Aortic valve sclerosis is associated with preclinical cardiovascular disease in hypertensive adults: the Hypertension Genetic Epidemiology Network study,” Journal of Hypertension, vol. 23, no. 4, pp. 867–873, 2005. View at Google Scholar · View at Scopus
  38. P. M. Taylor, P. Batten, N. J. Brand, P. S. Thomas, and M. H. Yacoub, “The cardiac valve interstitial cell,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 2, pp. 113–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. A. D. Durbin and A. I. Gotlieb, “Advances towards understanding heart valve response to injury,” Cardiovascular Pathology, vol. 11, no. 2, pp. 69–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. C. Liu, V. R. Joag, and A. I. Gotlieb, “The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology,” American Journal of Pathology, vol. 171, no. 5, pp. 1407–1418, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. T. Butcher and R. M. Nerem, “Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress,” Tissue Engineering, vol. 12, no. 4, pp. 905–915, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Sucosky, M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan, “Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue,” Journal of Biomechanical Engineering, vol. 130, no. 3, Article ID 035001-1, 2008. View at Publisher · View at Google Scholar · View at PubMed
  43. G. C. Engelmayr Jr., L. Soletti, S. C. Vigmostad et al., “A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology,” Annals of Biomedical Engineering, vol. 36, no. 5, pp. 700–712, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. Y. Xing, Z. He, J. N. Warnock, S. L. Hilbert, and A. P. Yoganathan, “Effects of constant static pressure on the biological properties of porcine aortic valve leaflets,” Annals of Biomedical Engineering, vol. 32, no. 4, pp. 555–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Xing, J. N. Warnock, H. Zhaoming, S. L. Hilbert, and A. P. Yoganathan, “Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner,” Annals of Biomedical Engineering, vol. 32, no. 11, pp. 1461–1470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Thayer, K. Balachandran, S. Rathan et al., “The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype interstitial cell phenotype,” Annals of Biomedical Engineering, vol. 39, no. 6, pp. 1654–1667, 2011. View at Publisher · View at Google Scholar · View at PubMed
  47. J. N. Warnock, S. Konduri, Z. He, and A. P. Yoganathan, “Design of a sterile organ culture system for the ex vivo study of aortic heart valves,” Journal of Biomechanical Engineering, vol. 127, no. 5, pp. 857–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. E. Barzilla, F. E. Acevedo, and K. J. Grande-Allen, “Organ culture as a tool to identify early mechanisms of serotonergic valve disease,” Journal of Heart Valve Disease, vol. 19, no. 5, pp. 626–635, 2010. View at Google Scholar
  49. J. E. Barzilla, A. S. McKenney, A. E. Cowan, C. A. Durst, and K. J. Grande-Allen, “Design and validation of a novel splashing bioreactor system for use in mitral valve organ culture,” Annals of Biomedical Engineering, vol. 38, no. 11, pp. 3280–3294, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Leskinen et al., “Valvular calcification and its relationship to atherosclerosis in chronic kidney disease,” Journal of Heart Valve Disease, vol. 18, no. 4, pp. 429–438, 2009. View at Google Scholar
  51. S. A. Salwen, D. H. Szarowski, J. N. Turner, and R. Bizios, “Three-dimensional changes of the cytoskeleton of vascular endothelial cells exposed to sustained hydrostatic pressure,” Medical and Biological Engineering and Computing, vol. 36, no. 4, pp. 520–527, 1998. View at Publisher · View at Google Scholar
  52. S. Kitamoto, G. K. Sukhova, J. Sun et al., “Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice,” Circulation, vol. 115, no. 15, pp. 2065–2075, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. G. K. Sukhova, Y. Zhang, J. H. Pan et al., “Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 897–906, 2003. View at Publisher · View at Google Scholar
  54. G. K. Sukhova, G. P. Shi, D. I. Simon, H. A. Chapman, and P. Libby, “Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells,” Journal of Clinical Investigation, vol. 102, no. 3, pp. 576–583, 1998. View at Google Scholar
  55. J. N. Warnock, S. C. Burgess, A. Shack, and A. P. Yoganathan, “Differential immediate-early gene responses to elevated pressure in porcine aortic valve interstitial cells,” Journal of Heart Valve Disease, vol. 15, no. 1, pp. 34–42, 2006. View at Google Scholar
  56. M. W. Weston and A. P. Yoganathan, “Biosynthetic activity in heart valve leaflets in response to in vitro flow environments,” Annals of Biomedical Engineering, vol. 29, no. 9, pp. 752–763, 2001. View at Publisher · View at Google Scholar
  57. C. M. Otto, “Calcific aortic stenosis—Time to look more closely at the valve,” New England Journal of Medicine, vol. 359, no. 13, pp. 1395–1398, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. C. M. Otto, J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O'Brien, “Characterization of the early lesion of 'degenerative' valvular aortic stenosis: histological and immunohistochemical studies,” Circulation, vol. 90, no. 2, pp. 844–853, 1994. View at Google Scholar
  59. E. Aikawa, M. Nahrendorf, D. Sosnovik et al., “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation, vol. 115, no. 3, pp. 377–386, 2007. View at Publisher · View at Google Scholar · View at PubMed
  60. M. O. Platt, Y. Xing, H. Jo, and A. P. Yoganathan, “Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves,” Journal of Heart Valve Disease, vol. 15, no. 5, pp. 622–629, 2006. View at Google Scholar
  61. N. M. Rajamannan, D. J. Rickard, A. J. Tajik et al., “Human aortic valve calcification is associated with an osteoblast phenotype,” Circulation, vol. 107, no. 17, pp. 2181–2184, 2003. View at Publisher · View at Google Scholar · View at PubMed
  62. A. A. Damji, I. Gedeon, M. Tanaka, and W. Lester, “Interstitial cells from the atrial and ventricular sides of the bovine mitral valve respond differently to denuding endocardial injury,” In Vitro Cellular and Developmental Biology, vol. 29, no. 1, pp. 41–50, 1993. View at Google Scholar
  63. K. O'Brien, “Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more),” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1721–1728, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. M. J. Levesque, S. Moravec, D. Liepsch, and R. M. Nerem, “Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta,” Arteriosclerosis, vol. 6, no. 2, pp. 220–229, 1986. View at Google Scholar
  65. T. Borg, I. Banerjee, R. A. Norris, T. A. Baudino, J. T. Butcher, and R. R. Markwald, “Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin,” Annals of the New York Academy of Sciences, vol. 1123, pp. 30–40, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. J. Warnock, C. A. Simmons, and J. T. Butcher, “Mechanobiology of the aortic heart valve,” Journal of Heart Valve Disease, vol. 17, no. 1, pp. 62–73, 2008. View at Google Scholar
  67. J. T. Butcher and R. R. Markwald, “Valvulogenesis: the moving target,” Philosophical Transactions of the Royal Society B, vol. 362, no. 1484, pp. 1489–1503, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. B. Jian, R. Levy, N. Narula, Q. Y. Li, and E. R. Mohler, “Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. 457–465, 2003. View at Publisher · View at Google Scholar
  69. J. T. Butcher and R. R. Markwald, “The next frontier in cardiovascular developmental biology—An integrated approach to adult disease?” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 2, pp. 60–61, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. H. S. Rapoport, R. Levy, J. N. Clark-Greuel et al., “Transforming growth factor-β1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events,” Annals of Thoracic Surgery, vol. 83, no. 3, pp. 946–953, 2007. View at Publisher · View at Google Scholar · View at PubMed
  71. S. Miriyala, M. C. G. Nieto, D. A. Smith et al., “Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation,” Circulation, vol. 113, no. 24, pp. 2818–2825, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. G. P. Sorescu, J. Hwang, N. L. Boyd et al., “Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response,” Journal of Biological Chemistry, vol. 278, no. 33, pp. 31128–31135, 2003. View at Publisher · View at Google Scholar · View at PubMed
  73. P. Sucosky, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan, “Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 2, pp. 254–260, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. D. Hoehn, L. Sun, and P. Sucosky, “Role of pathologic shear stress alterations in aortic valve endothelial activation,” Cardiovascular Engineering and Technology, vol. 1, no. 2, pp. 165–178, 2010. View at Publisher · View at Google Scholar
  75. D. Lo and I. Vesely, “Biaxial strain analysis of the porcine aortic valve,” Annals of Thoracic Surgery, vol. 60, supplement 2, pp. S374–S378, 1995. View at Google Scholar
  76. J. Liao, C. A. Gamez, S. Elder, S. A. Metzler, J. Chen, and J. N. Warnock, “Vasoactive agents alter the biomechanical properties of aortic heart valve leaflets in a time-dependent manner,” Journal of Heart Valve Disease, vol. 19, no. 1, pp. 86–96, 2010. View at Google Scholar
  77. K. E. Smith, S. A. Metzler, and J. Warnock, “Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells,” Biomechanics and Modeling in Mechanobiology, vol. 9, no. 1, pp. 117–125, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. P. Batten, C. H. Ku, P. H. Johnson et al., “Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch,” Cardiovascular Research, vol. 71, no. 3, pp. 548–556, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. K. Balachandran, P. Sucosky, S. Konduri, H. Jo, and A. P. Yoganathan, “An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch,” Annals of Biomedical Engineering, vol. 34, no. 11, pp. 1655–1665, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. P. Sucosky, K. Balachandran, H. Jo, and A. P. Yoganathan, “Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease,” American Journal of Physiology, vol. 296, no. 3, pp. H756–H764, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. R. A. Hopkins, H. D. Lukoff, R. A. Long, W. D. Merryman, M. S. Sacks, and G. C. Engelmayr, “Synergistic effects of cyclic tension and transforming growth factor-β1 on the aortic valve myofibroblast,” Cardiovascular Pathology, vol. 16, no. 5, pp. 268–276, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. W. D. Merryman, F. Guilak, R. A. Hopkins et al., “Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis,” American Journal of Physiology, vol. 290, no. 1, pp. H224–H231, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. J. H. Chen, C. Y. Y. Yip, R. Zhao, and C. A. Simmons, “Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 936–942, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. C. Choqueux, D. Detaint, M. P. Jacob et al., “Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors,” European Heart Journal, vol. 26, no. 13, pp. 1333–1341, 2005. View at Publisher · View at Google Scholar · View at PubMed
  85. F. T. Bosman and I. Stamenkovic, “Functional structure and composition of the extracellular matrix,” Journal of Pathology, vol. 200, no. 4, pp. 423–428, 2003. View at Publisher · View at Google Scholar · View at PubMed
  86. C. M. Dollery, A. M. Henney, and J. R. Mcewan, “Matrix metalloproteinases and cardiovascular disease,” Circulation Research, vol. 77, no. 5, pp. 863–868, 1995. View at Google Scholar
  87. J. R. Stone, E. Rabkin, Y. Fukumoto, P. Libby, M. Aikawa, and F. J. Schoen, “Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves,” Circulation, vol. 104, no. 21, pp. 2525–2532, 2001. View at Google Scholar
  88. P. Sucosky, K. Balachandran, H. Jo, and A. P. Yoganathan, “Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner,” American Journal of Pathology, vol. 177, no. 1, pp. 49–57, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. Z. Ferdous, H. Jo, and R. M. Nerem, “Differences in valvular and vascular cell responses to strain in osteogenic media,” Biomaterials, vol. 32, no. 11, pp. 2885–2893, 2011. View at Publisher · View at Google Scholar · View at PubMed
  90. Y. Xing, S. Konduri, J. Warnock, Z. He, and A. P. Yoganathan, “Normal physiological conditions maintain the biological characteristics of porcine aortic heart valves: an ex vivo organ culture study,” Annals of Biomedical Engineering, vol. 33, no. 9, pp. 1158–1166, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. B. Wilkins, T. C. Flanagan, A. Black, T. J. Smith, A. Pandit, and S. Jockenhoevel, “A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications,” Biomaterials, vol. 27, no. 10, pp. 2233–2246, 2006. View at Publisher · View at Google Scholar · View at PubMed
  92. I. El-Hamamsy, M. H. Yacoub, and A. H. Chester, “Neuronal regulation of aortic valve cusps,” Current Vascular Pharmacology, vol. 7, no. 1, pp. 40–46, 2009. View at Publisher · View at Google Scholar
  93. C. Moraes, J. H. Chen, Y. Sun, and C. A. Simmons, “Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation,” Lab on a Chip, vol. 10, no. 2, pp. 227–234, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. M. Weiler, C. Hwai Yap, K. Balachandran, M. Padala, and A. P. Yoganathan, “Regional analysis of dynamic deformation characteristics of native aortic valve leaflets,” Journal of Biomechanics, vol. 44, no. 8, pp. 1459–1465, 2011. View at Publisher · View at Google Scholar · View at PubMed