Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2011, Article ID 376909, 8 pages
http://dx.doi.org/10.4061/2011/376909
Review Article

Adiponectin in Cardiovascular Inflammation and Obesity

1Renal Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
2Cardiovascular Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
3Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA

Received 29 April 2011; Revised 8 June 2011; Accepted 10 June 2011

Academic Editor: Elena Aikawa

Copyright © 2011 Tamar R. Aprahamian and Flora Sam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hotta, T. Funahashi, Y. Arita et al., “Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients,” Arteriosclerosis, Thrombosis and Vascular Biology, vol. 20, no. 6, pp. 1595–1599, 2000. View at Google Scholar · View at Scopus
  2. Y. Iwashima, T. Katsuya, K. Ishikawa et al., “Hypoadiponectinemia is an independent risk factor for hypertension,” Hypertension, vol. 43, no. 6, pp. 1318–1323, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Kumada, S. Kihara, S. Sumitsuji et al., “Association of hypoadiponectinemia with coronary artery disease in men,” Arteriosclerosis, Thrombosis and Vascular Biology, vol. 23, no. 1, pp. 85–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. S. Lindsay, T. Funahashi, R. L. Hanson et al., “Adiponectin and development of type 2 diabetes in the Pima Indian population,” The Lancet, vol. 360, no. 9326, pp. 57–58, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara, “cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1),” Biochemical and Biophysical Research Communications, vol. 221, no. 2, pp. 286–289, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. A. H. Berg and P. E. Scherer, “Adipose tissue, inflammation, and cardiovascular disease,” Circulation Research, vol. 96, no. 9, pp. 939–949, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Maeda, M. Takahashi, T. Funahashi et al., “PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein,” Diabetes, vol. 50, no. 9, pp. 2094–2099, 2001. View at Google Scholar · View at Scopus
  10. M. Fasshauer, S. Kralisch, M. Klier et al., “Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes,” Biochemical and Biophysical Research Communications, vol. 301, no. 4, pp. 1045–1050, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Hattori, K. Akimoto, S. S. Gross, S. Hattori, and K. Kasai, “Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats,” Diabetologia, vol. 48, no. 6, pp. 1066–1074, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. Hosogai, A. Fukuhara, K. Oshima et al., “Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation,” Diabetes, vol. 56, no. 4, pp. 901–911, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Engeli, M. Feldpausch, K. Gorzelniak et al., “Association between adiponectin and mediators of inflammation in obese women,” Diabetes, vol. 52, no. 4, pp. 942–947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Krakoff, T. Funahashi, C. D. Stehouwer et al., “Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian,” Diabetes Care, vol. 26, no. 6, pp. 1745–1751, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Ouchi, S. Kihara, T. Funahashi et al., “Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue,” Circulation, vol. 107, no. 5, pp. 671–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Shibata, Y. Izumiya, K. Sato et al., “Adiponectin protects against the development of systolic dysfunction following myocardial infarction,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 6, pp. 1065–1074, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. Shibata, N. Ouchi, M. Ito et al., “Adiponectin-mediated modulation of hypertrophic signals in the heart,” Nature Medicine, vol. 10, no. 12, pp. 1384–1389, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. Ouchi, S. Kihara, Y. Arita et al., “Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin,” Circulation, vol. 100, no. 25, pp. 2473–2476, 1999. View at Google Scholar · View at Scopus
  19. N. Maeda, I. Shimomura, K. Kishida et al., “Diet-induced insulin resistance in mice lacking adiponectin/ACRP30,” Nature Medicine, vol. 8, no. 7, pp. 731–737, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. Shibata, N. Ouchi, S. Kihara, K. Sato, T. Funahashi, and K. Walsh, “Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 28670–28674, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Ohashi, S. Kihara, N. Ouchi et al., “Adiponectin replenishment ameliorates obesity-related hypertension,” Hypertension, vol. 47, no. 6, pp. 1108–1116, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. F. Sam, T. A. Duhaney, K. Sato et al., “Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure,” Endocrinology, vol. 151, no. 1, pp. 322–331, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. Shibata, K. Sato, D. R. Pimentel et al., “Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms,” Nature Medicine, vol. 11, no. 10, pp. 1096–1103, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Y. Liao, S. Takashima, N. Maeda et al., “Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism,” Cardiovascular Research, vol. 67, no. 4, pp. 705–713, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. T. Takahashi, S. Saegusa, H. Sumino et al., “Adiponectin replacement therapy attenuates myocardial damage in leptin-deficient mice with viral myocarditis,” Journal of International Medical Research, vol. 33, no. 2, pp. 207–214, 2005. View at Google Scholar · View at Scopus
  26. C. Kobashi, M. Urakaze, M. Kishida et al., “Adiponectin inhibits endothelial synthesis of interleukin-8,” Circulation Research, vol. 97, no. 12, pp. 1245–1252, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Ouchi, S. Kihara, Y. Arita et al., “Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway,” Circulation, vol. 102, no. 11, pp. 1296–1301, 2000. View at Google Scholar · View at Scopus
  28. J. Y. Kim, E. Van De Wall, M. Laplante et al., “Obesity-associated improvements in metabolic profile through expansion of adipose tissue,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2621–2637, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Persson, K. Lindberg, T. P. Gustafsson, P. Eriksson, G. Paulsson-Berne, and P. Lundman, “Low plasma adiponectin concentration is associated with myocardial infarction in young individuals,” Journal of Internal Medicine, vol. 268, no. 2, pp. 194–205, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. G. Iacobellis, A. Petrone, F. Leonetti, and R. Buzzetti, “Left ventricular mass and +276 G/G single nucleotide polymorphism of the adiponectin gene in uncomplicated obesity,” Obesity, vol. 14, no. 3, pp. 368–372, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. Unno, R. Shibata, H. Izawa et al., “Adiponectin acts as a positive indicator of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy,” Heart, vol. 96, no. 5, pp. 357–361, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. M. O'Shea, D. J. Chess, R. J. Khairallah et al., “Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 298, no. 6, pp. H1639–H1645, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. Li, R. Shibata, K. Unno et al., “Evidence for the importance of adiponectin in the cardioprotective effects of pioglitazone,” Hypertension, vol. 55, no. 1, pp. 69–75, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. N. Ouchi, M. Ohishi, S. Kihara et al., “Association of hypoadiponectinemia with impaired vasoreactivity,” Hypertension, vol. 42, no. 3, pp. 231–234, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. Aizawa-Abe, Y. Ogawa, H. Masuzaki et al., “Pathophysiological role of leptin in obesity-related hypertension,” Journal of Clinical Investigation, vol. 105, no. 9, pp. 1243–1252, 2000. View at Google Scholar · View at Scopus
  36. H. Masuzaki, Y. Ogawa, M. Aizawa-Abe et al., “Glucose metabolism and insulin sensitivity in transgenic mice overexpressing leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes,” Diabetes, vol. 48, no. 8, pp. 1615–1622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Brody, E. Peleg, E. Grossman, and Y. Sharabi, “Production and secretion of adiponectin from 3T3-L1 adipocytes: comparison of antihypertensive drugs,” The American Journal of Hypertension, vol. 22, no. 10, pp. 1126–1129, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Adamczak, A. Więcek, T. Funahashi, J. Chudek, F. Kokot, and Y. Matsuzawa, “Decreased plasma adiponectin concentration in patients with essential hypertension,” The American Journal of Hypertension, vol. 16, no. 1, pp. 72–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Kistorp, J. Faber, S. Galatius et al., “Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure,” Circulation, vol. 112, no. 12, pp. 1756–1762, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. L. B. Daniels and A. S. Maisel, “Natriuretic peptides,” Journal of the American College of Cardiology, vol. 50, no. 25, pp. 2357–2368, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. O. Tsukamoto, M. Fujita, M. Kato et al., “Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 53, no. 22, pp. 2070–2077, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. C. R. Bruce, V. A. Mertz, G. J. Heigenhauser, and D. J. Dyck, “The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects,” Diabetes, vol. 54, no. 11, pp. 3154–3160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. B. Chen, A. J. McAinch, S. L. Macaulay et al., “Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 6, pp. 3665–3672, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. L. Mullen, A. C. Smith, K. A. Junkin, and D. J. Dyck, “Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 1, pp. E83–E90, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. D. M. Maahs, L. G. Ogden, G. L. Kinney et al., “Low plasma adiponectin levels predict progression of coronary artery calcification,” Circulation, vol. 111, no. 6, pp. 747–753, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. Y. Nakamura, K. Shimada, D. Fukuda et al., “Implications of plasma concentrations of adiponectin in patients with coronary artery disease,” Heart, vol. 90, no. 5, pp. 528–533, 2004. View at Google Scholar · View at Scopus
  47. S. Manzi, E. N. Meilahn, J. E. Rairie et al., “Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study,” The American Journal of Epidemiology, vol. 145, no. 5, pp. 408–415, 1997. View at Google Scholar · View at Scopus
  48. P. Riboldi, M. Gerosa, C. Luzzana, and L. Catelli, “Cardiac involvement in systemic autoimmune diseases,” Clinical Reviews in Allergy and Immunology, vol. 23, no. 3, pp. 247–261, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. Y. Okamoto, E. J. Folco, M. Minami et al., “Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis,” Circulation Research, vol. 102, no. 2, pp. 218–225, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. J. D. Brown and J. Plutzky, “Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets,” Circulation, vol. 115, no. 4, pp. 518–533, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. P. A. Sarafidis and G. L. Bakris, “Protection of the kidney by thiazolidinediones: an assessment from bench to bedside,” Kidney International, vol. 70, no. 7, pp. 1223–1233, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. Aprahamian, R. G. Bonegio, C. Richez et al., “The peroxisome proliferator-activated receptor gamma agonist rosiglitazone ameliorates murine lupus by induction of adiponectin,” Journal of Immunology, vol. 182, no. 1, pp. 340–346, 2009. View at Google Scholar · View at Scopus
  53. N. A. Braun, N. S. Wade, E. K. Wakeland, and A. S. Major, “Accelerated atherosclerosis is independent of feeding high fat diet in systemic lupus erythematosus-susceptible LDLr(-/-) mice,” Lupus, vol. 17, no. 12, pp. 1070–1078, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. L. Gautier, T. Huby, B. Ouzilleau et al., “Enhanced immune system activation and arterial inflammation accelerates atherosclerosis in lupus-prone mice,” Arteriosclerosis, Thrombosis and Vascular Biology, vol. 27, no. 7, pp. 1625–1631, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Z. Ma, A. Choudhury, S. A. Kang, M. Monestier, P. L. Cohen, and R. A. Eisenberg, “Accelerated atherosclerosis in ApoE deficient lupus mouse models,” Clinical Immunology, vol. 127, no. 2, pp. 168–175, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. A. K. Stanic, C. M. Stein, A. C. Morgan et al., “Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythermatosus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7018–7023, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. M. Koenig, “Pulmonary complications of obesity,” The American Journal of the Medical Sciences, vol. 321, no. 4, pp. 249–279, 2001. View at Google Scholar · View at Scopus
  58. R. Summer, F. F. Little, N. Ouchi et al., “Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 294, no. 6, pp. L1035–L1042, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. R. Summer, C. A. Fiack, Y. Ikeda et al., “Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 3, pp. L432–L438, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. D. Medoff, Y. Okamoto, P. Leyton et al., “Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling,” The American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 4, pp. 397–406, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. Weng, M. J. Raher, P. Leyton et al., “Adiponectin decreases pulmonary arterial remodeling in mouse models of pulmonary hypertension,” The American Journal of Respiratory Cell and Molecular Biology. In press. View at Publisher · View at Google Scholar · View at PubMed
  62. Y. Nakagawa, K. Kishida, S. Kihara, T. Funahashi, and I. Shimomura, “Adiponectin ameliorates hypoxia-induced pulmonary arterial remodeling,” Biochemical and Biophysical Research Communications, vol. 382, no. 1, pp. 183–188, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. A. J. Walkey, T. W. Rice, J. Konter et al., “Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure,” Critical Care Medicine, vol. 38, no. 12, pp. 2329–2334, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. N. Ouchi, H. Kobayashi, S. Kihara et al., “Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1304–1309, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. Shimano, N. Ouchi, R. Shibata et al., “Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 2, pp. 210–220, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. P. Eren, S. Camus, G. Matrone et al., “Adiponectinemia controls pro-angiogenic cell therapy,” Stem Cells, vol. 27, no. 11, pp. 2712–2721, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. K. Ohashi, N. Ouchi, K. Sato et al., “Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3487–3499, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. R. Lijnen, V. Christiaens, I. Scroyen et al., “Impaired adipose tissue development in mice with inactivation of placental growth factor function,” Diabetes, vol. 55, no. 10, pp. 2698–2704, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 4, pp. E1118–E1128, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. L. K. Heilbronn and L. V. Campbell, “Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity,” Current Pharmaceutical Design, vol. 14, no. 12, pp. 1225–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Pasarica, O. R. Sereda, L. M. Redman et al., “Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response,” Diabetes, vol. 58, no. 3, pp. 718–725, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. I. Murano, G. Barbatelli, V. Parisani et al., “Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice,” Journal of Lipid Research, vol. 49, no. 7, pp. 1562–1568, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998. View at Google Scholar · View at Scopus
  74. J. Savill, I. Dransfield, C. Gregory, and C. Haslett, “A blast from the past: clearance of apoptotic cells regulates immune responses,” Nature Reviews Immunology, vol. 2, no. 12, pp. 965–975, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, J. R. Kalden, and I. Girkontaite, “Immunosuppressive effects of apoptotic cells,” Nature, vol. 390, no. 6658, pp. 350–351, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. K. Ohashi, J. L. Parker, N. Ouchi et al., “Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6153–6160, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. Y. Takemura, N. Ouchi, R. Shibata et al., “Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies,” Journal of Clinical Investigation, vol. 117, no. 2, pp. 375–386, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. J. Parker, H. Menn-Josephy, B. Laskow, Y. Takemura, and T. Aprahamian, “Modulation of lupus phenotype by adiponectin deficiency in autoimmune mouse models,” Journal of Clinical Immunology, vol. 31, no. 2, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at PubMed
  80. S. Landgraeber, A. Wegner, A. Canbay, and M. Von Knoch, “Serum levels of adiponectin in patients with aseptic loosening after total hip replacement,” Journal of Biomedical Materials Research Part A, vol. 93, no. 2, pp. 748–752, 2010. View at Publisher · View at Google Scholar · View at PubMed
  81. S. Cinti, G. Mitchell, G. Barbatelli et al., “Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans,” Journal of Lipid Research, vol. 46, no. 11, pp. 2347–2355, 2005. View at Publisher · View at Google Scholar · View at PubMed