Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2011, Article ID 958247, 11 pages
http://dx.doi.org/10.4061/2011/958247
Review Article

Inflammation in Cardiovascular Tissue Engineering: The Challenge to a Promise: A Minireview

Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Center, Clemson, SC 29634, USA

Received 24 March 2011; Accepted 10 May 2011

Academic Editor: Adrian Chester

Copyright © 2011 Agneta Simionescu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Orlando, P. Baptista, M. Birchall et al., “Regenerative medicine as applied to solid organ transplantation: current status and future challenges,” Transplant International, vol. 24, pp. 223–232, 2011. View at Google Scholar
  2. C. Landis, “Why the inflammatory response is important to the cardiac surgical patient,” Journal of Extra-Corporeal Technology, vol. 39, no. 4, pp. 281–284, 2007. View at Google Scholar · View at Scopus
  3. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. Williams, “Metastable biocompatibility: a new approach,” Medical Device Technology, vol. 18, no. 8, pp. 10–11, 2007. View at Google Scholar · View at Scopus
  5. A. E. Trantina-Yates, P. Human, M. Bracher, and P. Zilla, “Mitigation of bioprosthetic heart valve degeneration through biocompatibility: in vitro versus spontaneous endothelialization,” Biomaterials, vol. 22, no. 13, pp. 1837–1846, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Robbins, V. Kumar, and R. S. Cotran, Robbins and Cotran Pathologic Basis Of Disease, Saunders, Philadelphia, Pa, USA, 2010.
  7. P. Libby and P. M. Ridker, “Inflammation and atherothrombosis. from population biology and bench research to clinical practice,” Journal of the American College of Cardiology, vol. 48, no. 9, pp. A33–A46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Mier, E. P. Brandon, P. Libby, M. W. Janicka, and F. R. Aronson, “Activated endothelial cells resist lymphokine-activated killer cell-mediated injury. possible role of induced cytokines in limiting capilarry leak during IL-2 therapy,” Journal of Immunology, vol. 143, no. 7, pp. 2407–2414, 1989. View at Google Scholar · View at Scopus
  9. C. J. Diskin, “Novel insights into the pathobiology of the vascular access—do they translate into improved care?” Blood Purification, vol. 29, no. 2, pp. 216–229, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. A. Cieslik, G. E. Taffet, S. Carlson, J. Hermosillo, J. Trial, and M. L. Entman, “Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 1, pp. 248–256, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. F. J. Schoen, “Heart valve tissue engineering: quo vadis?” Current Opinion in Biotechnology, vol. 39, no. 1, pp. 205–222, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Dahm, W. D. Lyman, A. B. Schwell, S. M. Factor, and R. W. Frater, “Immunogenicity of glutaraldehyde-tanned bovine pericardium,” Journal of Thoracic and Cardiovascular Surgery, vol. 99, no. 6, pp. 1082–1090, 1990. View at Google Scholar · View at Scopus
  13. J. E. Feig, S. Parathath, J. X. Rong et al., “Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques,” Circulation, vol. 123, pp. 989–998, 2011. View at Google Scholar
  14. S. Devaraj and I. Jialal, “C-reactive protein polarizes human macrophages to an m1 phenotype and inhibits transformation to the m2 phenotype,” Arteriosclerosis Thrombosis and Vascular Biology. In press.
  15. J. Mikita, N. Dubourdieu-Cassagno, M. S. Deloire et al., “Altered m1/m2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. amelioration of clinical status by m2 activated monocyte administration,” Multiple Sclerosis, vol. 17, pp. 2–15, 2011. View at Google Scholar
  16. S. F. Badylak, J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers, “Macrophage phenotype as a determinant of biologic scaffold remodeling,” Tissue Engineering Part A, vol. 14, no. 11, pp. 1835–1842, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. B. Nourse, D. E. Halpin, M. Scatena et al., “Vegf induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering,” Arteriosclerosis Thrombosis and Vascular Biology, vol. 30, no. 1, pp. 80–89, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. R. Lindner, “Contrast ultrasound molecular imaging of inflammation in cardiovascular disease,” Cardiovascular Research, vol. 84, no. 2, pp. 182–189, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. Kaul and J. R. Lindner, “Visualizing coronary atherosclerosis in vivo: thinking Big, imaging Small,” Journal of the American College of Cardiology, vol. 43, no. 3, pp. 461–463, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. A. Wickline, A. M. Neubauer, P. Winter, S. Caruthers, and G. Lanza, “Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology,” Arteriosclerosis Thrombosis and Vascular Biology, vol. 26, no. 3, pp. 435–441, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. F. A. Jaffer, C. Vinegoni, M. C. John et al., “Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis,” Circulation, vol. 118, no. 18, pp. 1802–1809, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. B. A. Kaufmann, J. M. Sanders, C. Davis et al., “Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1,” Circulation, vol. 116, no. 3, pp. 276–284, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Libby, P. M. Ridker, and G. K. Hansson, “Inflammation in atherosclerosis,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Danesh, J. G. Wheeler, G. M. Hirschfield et al., “C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease,” New England Journal of Medicine, vol. 350, no. 14, pp. 1387–1397, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. J. Glynn, J. G. MacFadyen, and P. M. Ridker, “Tracking of high-sensitivity c-reactive protein after an initially elevated concentration: the jupiter study,” Clinical Chemistry, vol. 55, no. 2, pp. 305–312, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. M. Ridker, “C-reactive protein and the prediction of cardiovascular events among those at intermediate risk. moving an inflammatory hypothesis toward consensus,” Journal of the American College of Cardiology, vol. 49, no. 21, pp. 2129–2138, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. M. Ridker, C. P. Cannon, D. Morrow et al., “C-reactive protein levels and outcomes after statin therapy,” New England Journal of Medicine, vol. 352, no. 1, pp. 20–28, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Naito, T. Shinoka, D. Duncan et al., “Vascular tissue engineering: towards the next generation vascular grafts,” Advanced Drug Delivery Reviews, vol. 63, no. 4-5, pp. 312–323, 2011. View at Google Scholar
  29. B. Weber, M. Y. Emmert, R. Schoenauer, C. Brokopp, L. Baumgartner, and S. P. Hoerstrup, “Tissue engineering on matrix: future of autologous tissue replacement,” Seminars in Immunopathology, 2011. View at Google Scholar
  30. H. M. Nugent and E. R. Edelman, “Tissue engineering therapy for cardiovascular disease,” Circulation Research, vol. 92, no. 10, pp. 1068–1078, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. S. Apte, A. Paul, S. Prakash, and D. Shum-Tim, “Current developments in the tissue engineering of autologous heart valves: moving towards clinical use,” Future Cardiology, vol. 7, no. 1, pp. 77–97, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. G. Mikos, S. W. Herring, P. Ochareon et al., “Engineering complex tissues,” Tissue Engineering, vol. 12, no. 12, pp. 3307–3339, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. E. Rabkin and F. J. Schoen, “Cardiovascular tissue engineering,” Cardiovascular Pathology, vol. 11, no. 6, pp. 305–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. F. Badylak, “The extracellular matrix as a biologic scaffold material,” Biomaterials, vol. 28, no. 25, pp. 3587–3593, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. T. Kasimir, E. Rieder, G. Seebacher, E. Wolner, G. Weigel, and P. Simon, “Presence and elimination of the xenoantigen gal (alpha1, 3) gal in tissue-engineered heart valves,” Tissue Engineering, vol. 11, no. 7-8, pp. 1274–1280, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. F. Badylak, “Xenogeneic extracellular matrix as a scaffold for tissue reconstruction,” Transplant Immunology, vol. 12, no. 3-4, pp. 367–377, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. E. Tedder, J. Liao, B. Weed et al., “Stabilized collagen scaffolds for heart valve tissue engineering,” Tissue Engineering Part A, vol. 15, no. 6, pp. 1257–1268, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. T. H. Chuang, C. Stabler, A. Simionescu, and D. T. Simionescu, “Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts,” Tissue Engineering Part A, vol. 15, no. 10, pp. 2837–2851, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. T. Simionescu, Q. Lu, Y. Song et al., “Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds,” Biomaterials, vol. 27, no. 5, pp. 702–713, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. T. Simionescu, “Prevention of calcification in bioprosthetic heart valves: challenges and perspectives,” Expert Opinion on Biological Therapy, vol. 4, no. 12, pp. 1971–1985, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. Simionescu, D. Simionescu, and R. Deac, “Lysine-enhanced glutaraldehyde crosslinking of collagenous biomaterials,” Journal of Biomedical Materials Research, vol. 25, no. 12, pp. 1495–1506, 1991. View at Google Scholar · View at Scopus
  42. D. Bezuidenhout, A. Oosthuysen, P. Human, C. Weissenstein, and P. Zilla, “The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials,” Biotechnology and Applied Biochemistry, vol. 54, pp. 133–140, 2009. View at Google Scholar
  43. A. E. Trantina-Yates, P. Human, and P. Zilla, “Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model,” Journal of Heart Valve Disease, vol. 12, no. 1, pp. 93–101, 2003. View at Google Scholar · View at Scopus
  44. P. Huma, D. Bezuidenhout, M. Torrianni, M. Hendriks, and P. Zilla, “Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue,” Biomaterials, vol. 23, no. 10, pp. 2099–2103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Zilla, D. Bezuidenhout, C. Weissenstein, A. Van Der Walt, and P. Human, “Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model,” Journal of Biomedical Materials Research, vol. 56, no. 1, pp. 56–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. S. Lee, D. M. Basalyga, A. Simionescu, J. C. Isenburg, D. T. Simionescu, and N. R. Vyavahare, “Elastin calcification in the rat subdermal model is accompanied by up-regulation of degradative and osteogenic cellular responses,” American Journal of Pathology, vol. 168, no. 2, pp. 490–498, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. A. Simionescu, K. Philips, and N. Vyavahare, “Elastin-derived peptides and tgf-beta1 induce osteogenic responses in smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 334, no. 2, pp. 524–532, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D. M. Basalyga, D. T. Simionescu, W. Xiong, B. T. Baxter, B. C. Starcher, and N. R. Vyavahare, “Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases,” Circulation, vol. 110, no. 22, pp. 3480–3487, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. C. Isenburg, D. T. Simionescu, and N. R. Vyavahare, “Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall,” Biomaterials, vol. 26, no. 11, pp. 1237–1245, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. J. C. Isenburg, N. V. Karamchandani, D. T. Simionescu, and N. R. Vyavahare, “Structural requirements for stabilization of vascular elastin by polyphenolic tannins,” Biomaterials, vol. 27, no. 19, pp. 3645–3651, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. J. C. Isenburg, D. T. Simionescu, B. C. Starcher, and N. R. Vyavahare, “Elastin stabilization for treatment of abdominal aortic aneurysms,” Circulation, vol. 115, no. 13, pp. 1729–1737, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. S. K. Singh, N. D. Desai, S. D. Petroff et al., “The impact of diabetic status on coronary artery bypass graft patency: insights from the radial artery patency study,” Circulation, vol. 118, no. 14, pp. S222–S225, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. C. Marchand, F. Heim, and B. A. Durand, “A novel stent for percutaneous heart valve implantation: first in vitro results,” Journal of Biomechanical Engineering, vol. 132, no. 5, Article ID 054502, 2010. View at Publisher · View at Google Scholar · View at PubMed
  54. G. Soldani, P. Losi, M. Bernabei et al., “Long term performance of small-diameter vascular grafts made of a poly(ether)urethane-polydimethylsiloxane semi-interpenetrating polymeric network,” Biomaterials, vol. 31, no. 9, pp. 2592–2605, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. G. Meinhart, M. Deutsch, T. Fischlein, N. Howanietz, A. Fröschl, and P. Zilla, “Clinical autologous in vitro endothelialization of 153 infrainguinal eptfe grafts,” Annals of Thoracic Surgery, vol. 71, no. 5, pp. S327–S331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Zilla, D. Bezuidenhout, and P. Human, “Prosthetic vascular grafts: wrong models, wrong questions and no healing,” Biomaterials, vol. 28, no. 34, pp. 5009–5027, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. B. Jian, N. Narula, Q. Y. Li, E. R. Mohler, and R. J. Levy, “Progression of aortic valve stenosis: Tgf-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. 457–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. F. J. Schoen, “Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering,” Circulation, vol. 118, no. 18, pp. 1864–1880, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. P. Zilla, J. Brink, P. Human, and D. Bezuidenhout, “Prosthetic heart valves: catering for the few,” Biomaterials, vol. 29, no. 4, pp. 385–406, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. M. R. Abboud, J. Cure, S. Granger et al., “Magnetic resonance angiography in children with sickle cell disease and abnormal transcranial Doppler ultrasonography findings enrolled in the stop study,” Blood, vol. 103, no. 7, pp. 2822–2826, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. K. Mendelson and F. J. Schoen, “Heart valve tissue engineering: concepts, approaches, progress, and challenges,” Annals of Biomedical Engineering, vol. 34, no. 12, pp. 1799–1819, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. P. Simon, M. T. Kasimir, G. Seebacher et al., “Early failure of the tissue engineered porcine heart valve synergraft in pediatric patients,” European Journal of Cardio-Thoracic Surgery, vol. 23, no. 6, pp. 1002–1006, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. L. N. Sierad, A. Simionescu, C. Albers et al., “Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves,” Cardiovascular Engineering and Technology, pp. 138–153, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. D. Schmidt, P. E. Dijkman, A. Driessen-Mol et al., “Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells,” Journal of the American College of Cardiology, vol. 56, no. 6, pp. 510–520, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. P. S. Robinson, S. L. Johnson, M. C. Evans, V. H. Barocas, and R. T. Tranquillo, “Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen,” Tissue Engineering Part A, vol. 14, no. 1, pp. 83–95, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. P. M. Ridker, E. Danielson, F. A. H. Fonseca et al., “Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein,” New England Journal of Medicine, vol. 359, no. 21, pp. 2195–2207, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. J. Chlupác, E. Filová, and L. Bacáková, “Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery,” Physiological Research, vol. 58, pp. S119–S139, 2009. View at Google Scholar · View at Scopus
  68. D. Tsetis, “Endovascular treatment of complications of femoral arterial access,” CardioVascular and Interventional Radiology, vol. 33, no. 3, pp. 457–468, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. M. Thatipelli and S. Misra, “Endovascular intervention for renal artery stenosis,” Abdominal Imaging, no. 35, pp. 612–621, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. I. I. Galaria, S. M. Surowiec, J. M. Rhodes et al., “Percutaneous and open renal revascularizations have equivalent long-term functional outcomes,” Annals of Vascular Surgery, vol. 19, no. 2, pp. 218–228, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. L. E. Niklason and R. S. Langer, “Advances in tissue engineering of blood vessels and other tissues,” Transplant Immunology, vol. 5, no. 4, pp. 303–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. F. J. Veith, S. K. Gupta, E. Ascer et al., “Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions,” Journal of Vascular Surgery, vol. 3, pp. 104–114, 1986. View at Google Scholar
  73. A. Patel, B. Fine, M. Sandig, and K. Mequanint, “Elastin biosynthesis: the missing link in tissue-engineered blood vessels,” Cardiovascular Research, vol. 71, no. 1, pp. 40–49, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. M. Sales, H. J. Salacinski, N. Alobaid, M. Mikhail, V. Balakrishnan, and A. M. Seifalian, “Advancing vascular tissue engineering: the role of stem cell technology,” Trends in Biotechnology, vol. 23, no. 9, pp. 461–467, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. Kim and H. V. Recum, “Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application,” Tissue Engineering Part B, vol. 14, no. 1, pp. 133–147, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. C. Williams and T. Wick, “Perfusion bioreactor for small diameter tissue-engineered arteries,” Tissue Engineering, vol. 10, no. 5-6, pp. 930–941, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. M. Desai, A. M. Seifalian, and G. Hamilton, “Role of prosthetic conduits in coronary artery bypass grafting,” European Journal of Cardio-Thoracic Surgery. In press. View at Publisher · View at Google Scholar · View at PubMed
  78. A. G. Arroyo and M. L. Iruela-Arispe, “Extracellular matrix, inflammation, and the angiogenic response,” Cardiovascular Research, vol. 86, no. 2, pp. 226–235, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. G. S. Schultz and A. Wysocki, “Interactions between extracellular matrix and growth factors in wound healing,” Wound Repair and Regeneration, vol. 17, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. F. Antonicelli, G. Bellon, L. Debelle, and W. Hornebeck, “Elastin-elastases and inflamm-aging,” Current Topics in Developmental Biology, vol. 79, pp. 99–155, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. P. Libby and J. S. Pober, “Chronic rejection,” Immunity, vol. 14, no. 4, pp. 387–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Shimizu and R. N. Mitchell, “The role of chemokines in transplant graft arterial disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 11, pp. 1937–1949, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. R. N. Mitchell and P. Libby, “Vascular remodeling in transplant vasculopathy,” Circulation Research, vol. 100, no. 7, pp. 967–978, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. A. S. Neish, E. Loh, and F. J. Schoen, “Myocardial changes in cardiac transplant-associated coronary arteriosclerosis: potential for timely diagnosis,” Journal of the American College of Cardiology, vol. 19, no. 3, pp. 586–592, 1992. View at Google Scholar · View at Scopus
  85. J. J. Yun, M. P. Fischbein, H. Laks et al., “Early and late chemokine production correlates with cellular recruitment in cardiac allograft vasculopathy,” Transplantation, vol. 69, no. 12, pp. 2515–2524, 2000. View at Google Scholar · View at Scopus
  86. E. Di Carlo, T. D'Antuono, S. Contento, M. Di Nicola, E. Ballone, and C. Sorrentino, “Quilty effect has the features of lymphoid neogenesis and shares cxcl13-cxcr5 pathway with recurrent acute cardiac rejections,” American Journal of Transplantation, vol. 7, no. 1, pp. 201–210, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. G. K. Owens, “Regulation of differentiation of vascular smooth muscle cells,” Physiological Reviews, vol. 75, no. 3, pp. 487–517, 1995. View at Google Scholar · View at Scopus
  88. K. Shimizu and R. N. Mitchell, “Chemokine-mediated recruitment of inflammatory and smooth muscle cells in transplant-associated arteriosclerosis,” Current Opinion in Organ Transplantation, vol. 8, no. 1, pp. 55–63, 2003. View at Google Scholar · View at Scopus
  89. K. Horiguchi, S. Kitagawa-Sakakida, Y. Sawa et al., “Selective chemokine and receptor gene expressions in allografts that develop transplant vasculopathy,” Journal of Heart and Lung Transplantation, vol. 21, no. 10, pp. 1090–1100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. D. X. Zhao, Y. Hu, G. G. Miller, A. D. Luster, R. N. Mitchell, and P. Libby, “Differential expression of the ifn-gamma-inducible cxcr3-binding chemokines, ifn-inducible protein 10, monokine induced by ifn, and association with cardiac allograft vasculopathy and acute rejection,” Journal of Immunology, vol. 169, no. 3, pp. 1556–1560, 2002. View at Google Scholar · View at Scopus
  91. P. Libby and G. K. Hansson, “Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions,” Laboratory Investigation, vol. 64, no. 1, pp. 5–15, 1991. View at Google Scholar · View at Scopus
  92. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J. J. Fuster, P. Fernandez, H. Gonzalez-Navarro, C. Silvestre, Y. N. A. Nahbah, and V. Andres, “Control of cell proliferation in atherosclerosis-insights from animal models and human studies,” Cardiovascular Research, vol. 86, pp. 254–264, 2010. View at Google Scholar
  94. D. J. Stuckey, H. Ishii, Q. Z. Chen et al., “Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction,” Tissue Engineering Part A, vol. 16, no. 11, pp. 3395–3402, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. H. Jawad, N. N. Ali, A. R. Lyon, Q. Z. Chen, S. E. Harding, and A. R. Boccaccini, “Myocardial tissue engineering: a review,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 5, pp. 327–342, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. H. K. Graham, M. Horn, and A. W. Trafford, “Extracellular matrix profiles in the progression to heart failure: european young physiologists symposium keynote lecture-bratislava 2007,” Acta Physiologica, vol. 194, no. 1, pp. 3–21, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. A. Lesman, M. Habib, O. Caspi et al., “Transplantation of a tissue-engineered human vascularized cardiac muscle,” Tissue Engineering Part A, vol. 16, no. 1, pp. 115–125, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. M. Behnes, U. Hoffmann, S. Lang et al., “Transforming growth factor beta 1 (tgf-beta 1) in atrial fibrillation and acute congestive heart failure,” Clinical Research in Cardiology, vol. 100, no. 4, pp. 335–342, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. T. K. Borg and R. Markwald, “Periostin: more than just an adhesion molecule,” Circulation Research, vol. 101, no. 3, pp. 230–231, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. J. W. Holmes, T. K. Borg, and J. W. Covell, “Structure and mechanics of healing myocardial infarcts,” Annual Review of Biomedical Engineering, vol. 7, pp. 223–253, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. S. Kofler, T. Nickel, and M. Weis, “Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation,” Clinical Science, vol. 108, no. 3, pp. 205–213, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. W. H. Zimmermann, “Remuscularizing failing hearts with tissue engineered myocardium,” Antioxidants and Redox Signaling, vol. 11, no. 8, pp. 2011–2023, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. R. I. Mehta, M. C. Fishbein, O. E. Solis et al., “Intravascular polymer material after coil embolization of a giant cerebral aneurysm,” Human Pathology, vol. 40, no. 12, pp. 1803–1807, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. N. Jowett, D. Thompson, and R. Boyle, Comprehensive Coronary Care, Baillière Tindall, 2007.
  105. G. Esposito, S. Dellegrottaglie, and M. Chiariello, “The extent of irreversible myocardial damage and the potential for left ventricular repair after primary percutaneous coronary intervention,” American Heart Journal, vol. 160, no. 6, pp. S4–S10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. J. C. Blankenship, T. D. Scott, K. A. Skelding et al., “Door-to-balloon times under 90 min can be routinely achieved for patients transferred for st-segment elevation myocardial infarction percutaneous coronary intervention in a rural setting,” Journal of the American College of Cardiology, vol. 57, pp. 272–279, 2011. View at Google Scholar
  107. K. Nishida, S. K. Hirota, T. B. Seto et al., “Quality measure study: progress in reducing the door-to-balloon time in patients with st-segment elevation myocardial infarction,” Hawaii Medical Journal, vol. 69, pp. 242–246, 2010. View at Google Scholar
  108. F. Wang and J. Guan, “Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 784–797, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. K. T. Weber, “Cardiac interstitium in health and disease: the fibrillar collagen network,” Journal of the American College of Cardiology, vol. 13, no. 7, pp. 1637–1652, 1989. View at Google Scholar · View at Scopus
  110. W. H. Zimmermann, I. Melnychenko, G. Wasmeier et al., “Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts,” Nature Medicine, vol. 12, no. 4, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. H. Piao, J. S. Kwon, S. Piao et al., “Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and pgcl scaffolds in a rat myocardial infarction model,” Biomaterials, vol. 28, no. 4, pp. 641–649, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. Q. Ke, Y. Yang, J. S. Rana, Y. Chen, J. P. Morgan, and Y. F. Xiao, “Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice,” Sheng Li Xue Bao, vol. 57, pp. 673–681, 2005. View at Google Scholar
  113. M. Di Donato, M. Sabatier, V. Dor et al., “Effects of the dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 1, pp. 91–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. A. S. Krupnick, D. Kreisel, F. H. Engels et al., “A novel small animal model of left ventricular tissue engineering,” Journal of Heart and Lung Transplantation, vol. 21, no. 2, pp. 233–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. K. A. Robinson, J. Li, M. Mathison et al., “Extracellular matrix scaffold for cardiac repair,” Circulation, vol. 112, no. 9, pp. I135–I143, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. K. Matsubayashi, P. W. Fedak, D. A. Mickle, R. D. Weisel, T. Ozawa, and R. K. Li, “Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts,” Circulation, vol. 108, Suppl 1, no. 10, pp. II219–II225, 2003. View at Google Scholar · View at Scopus
  117. K. R. Stevens, K. L. Kreutziger, S. K. Dupras et al., “Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16568–16573, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. J. C. Chachques, J. C. Trainini, N. Lago, M. Cortes-Morichetti, O. Schussler, and A. Carpentier, “Myocardial assistance by grafting a new bioartificial upgraded myocardium (magnum trial): clinical feasibility study,” Annals of Thoracic Surgery, vol. 85, no. 3, pp. 901–908, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. Z. Xiang, R. Liao, M. S. Kelly, and M. Spector, “Collagen-gag scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells,” Tissue Engineering, vol. 12, no. 9, pp. 2467–2478, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. G. A. Fishbein and M. C. Fishbein, “Arteriosclerosis: rethinking the current classification,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 8, pp. 1309–1316, 2009. View at Google Scholar · View at Scopus
  121. R. N. Mitchell and P. Libby, “Vascular remodeling in transplant vasculopathy,” Circulation Research, vol. 100, no. 7, pp. 967–978, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. F. J. Schoen and R. J. Levy, “Calcification of tissue heart valve substitutes: progress toward understanding and prevention,” Annals of Thoracic Surgery, vol. 79, no. 3, pp. 1072–1080, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. R. A. Hopkins, A. L. Jones, L. Wolfinbarger, M. A. Moore, A. A. Bert, and G. K. Lofland, “Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, pp. 907–913, 2009. View at Google Scholar
  124. M. Writing Group, D. Lloyd-Jones, R. Adams et al., “Heart disease and stroke statistics—2009 update: a report from the american heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 119, no. 3, pp. e21–e181, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. P. T. Kovanen, “Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques,” Biochemical Society Transactions, vol. 35, no. 5, pp. 857–861, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus