Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2012 (2012), Article ID 354904, 11 pages
http://dx.doi.org/10.1155/2012/354904
Research Article

Long-Lasting Effect of Infant Rats Endotoxemia on Heat Shock Protein 60 in the Pancreatic Acinar Cells: Involvement of Toll-Like Receptor 4

1Department of Medical Physiology, Faculty of Health Sciences, School of Medicine, Jagiellonian University, Michalowskiego 12 Street, 31-126 Krakow, Poland
2Physiology Medical Faculty, School of Medicine, Jagiellonian University, Grzegorzecka 16 Street, 31-531 Krakow, Poland

Received 23 December 2011; Revised 10 March 2012; Accepted 14 March 2012

Academic Editor: Zoltan Rakonczay

Copyright © 2012 Joanna Bonior et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Glauser, G. Zanetti, J. D. Baumgartner, and J. Cohen, “Septic shock: pathogenesis,” The Lancet, vol. 338, no. 8769, pp. 732–736, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Reis, X. Q. Guan, A. F. Kisselev et al., “LPS-induced formation of immunoproteasomes: TNF-α and nitric oxide production are regulated by altered composition of proteasome-active sites,” Cell Biochemistry and Biophysics, vol. 60, no. 1-2, pp. 77–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque, and A. Leite-Moreira, “The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases,” Hepatology International, vol. 4, no. 4, pp. 659–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. R. Raetz, “Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction,” Journal of Bacteriology, vol. 175, no. 18, pp. 5745–5753, 1993. View at Google Scholar · View at Scopus
  5. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Aderem and R. J. Ulevitch, “Toll-like receptors in the induction of the innate immune response,” Nature, vol. 406, no. 6797, pp. 782–787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. B. A. Beutler, “TLRs and innate immunity,” Blood, vol. 113, no. 7, pp. 1399–1407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Pimentel-Nunes, J. B. Soares, R. Roncon-Albuquerque, M. Dinis-Ribeiro, and A. F. Leite-Moreira, “Toll-like receptors as therapeutic targets in gastrointestinal diseases,” Expert Opinion on Therapeutic Targets, vol. 14, no. 4, pp. 347–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Kim, B. S. Park, J. Kim et al., “Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran,” Cell, vol. 130, no. 5, pp. 906–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. E. Bryant, D. R. Spring, M. Gangloff, and N. J. Gay, “The molecular basis of the host response to lipopolysaccharide,” Nature Reviews Microbiology, vol. 8, no. 1, pp. 8–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Tsung, R. Sahai, H. Tanaka et al., “The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1135–1143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Jiang, J. Liang, J. Fan et al., “Regulation of lung injury and repair by Toll-like receptors and hyaluronan,” Nature Medicine, vol. 11, no. 11, pp. 1173–1179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 3015–3025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ohashi, V. Burkart, S. Flohe, and H. Kolb, “Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex,” Journal of Immunology, vol. 164, no. 2, pp. 558–561, 2000. View at Google Scholar · View at Scopus
  15. G. Gruden, G. Bruno, N. Chaturvedi et al., “ANTI-HSP60 and ANTI-HSP70 antibody levels and micro/ macrovascular complications in type 1 diabetes: the EURODIAB Study,” Journal of Internal Medicine, vol. 266, no. 6, pp. 527–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. M. Le Gall and M. Bendayan, “Possible association of chaperonin 60 with secretory proteins in pancreatic acinar cells,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 7, pp. 743–749, 1996. View at Google Scholar · View at Scopus
  17. Y. Li, D. Gingras, I. Londono, and M. Bendayan, “Expression differences in mitochondrial and secretory chaperonin 60 (Cpn60) in pancreatic acinar cells,” Cell Stress Chaperones, vol. 14, pp. 199–206, 2003. View at Google Scholar
  18. M. Otaka, A. Okuyama, S. Otani et al., “Differential induction of HSP60 and HSP72 by different stress situations in rats: correlation with cerulein-induced pancreatitis,” Digestive Diseases and Sciences, vol. 42, no. 7, pp. 1473–1479, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Rakonczay Jr., T. Takács, B. Ivanyi et al., “The effects of hypo- and hyperthermic pretreatment on sodium taurocholate-induced acute pancreatitis in rats,” Pancreas, vol. 24, pp. 83–89, 2002. View at Google Scholar
  20. Z. Rakonczay Jr., T. Takács, I. Boros, and J. Lonovics, “Heat shock proteins and the pancreas,” Journal of Cellular Physiology, vol. 195, no. 3, pp. 383–391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Chen, J. Zou, S. Wang et al., “Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells,” Biochemistry, vol. 48, no. 15, pp. 3519–3526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Frossard, M. L. Steer, and C. M. Pastor, “Acute pancreatitis,” The Lancet, vol. 371, no. 9607, pp. 143–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. G. Raraty, J. A. Murphy, E. Mcloughlin, D. Smith, D. Criddle, and R. Sutton, “Mechanisms of acinar cell injury in acute pancreatitis,” Scandinavian Journal of Surgery, vol. 94, no. 2, pp. 89–96, 2005. View at Google Scholar · View at Scopus
  24. M. Ohmuraya and K. Yamamura, “Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation,” Autophagy, vol. 4, no. 8, pp. 1060–1062, 2008. View at Google Scholar · View at Scopus
  25. J. Jaworek, B. Jachimczak, J. Bonior et al., “Protective role of endogenous nitric oxide (NO) in lipopolysaccharide-induced pancreatic damage. (A new experimental model of acute pancreatitis),” Journal of Physiology and Pharmacology, vol. 51, no. 1, pp. 85–102, 2000. View at Google Scholar · View at Scopus
  26. J. Jaworek, B. Jachimczak, R. Tomaszewska et al., “Protective action of lipopolysaccharides in rat caerulein-induced pancreatitis: role of nitric oxide,” Digestion, vol. 62, no. 1, pp. 1–13, 2000. View at Google Scholar · View at Scopus
  27. J. Jaworek, J. Bonior, R. Tomaszewska et al., “Involvement of cyclooxygenase-derived prostaglandin E2 and nitric oxide in the protection of rat pancreas afforded by low dose of lipopolysaccharide,” Journal of Physiology and Pharmacology, vol. 52, no. 1, pp. 107–126, 2001. View at Google Scholar
  28. J. Jaworek, J. Bonior, K. Nawrot et al., “Intracerebroventricular administration of bacterial lipopolysaccharide prevents the development of acute experimental pancreatitis in the rat,” Medical Science Monitor, vol. 8, no. 4, pp. BR136–BR143, 2002. View at Google Scholar · View at Scopus
  29. J. Jaworek, S. J. Konturek, M. Macko et al., “Endotoxemia in newborn rats attenuates acute pancreatitis at adult age,” Journal of Physiology and Pharmacology, vol. 58, no. 1, pp. 131–147, 2007. View at Google Scholar · View at Scopus
  30. J. Jaworek, A. Leja-Szpak, K. Nawrot-Porąbka et al., “Effect of neonatal endotoxemia on the pancreas of adult rats,” Journal of Physiology and Pharmacology, vol. 59, no. 4, pp. 87–102, 2008. View at Google Scholar · View at Scopus
  31. J. Bonior, J. Jaworek, M. Kot, S. J. Konturek, and W. W. Pawlik, “Endotoxemia in the infant rats modulates HSP60 protein level in the pancreatic acinar cells,” Journal of Physiology and Pharmacology, vol. 58, no. 3, pp. 189–198, 2007. View at Google Scholar · View at Scopus
  32. J. Jaworek, K. Nawrot-Porąbka, A. Leja-Szpak et al., “Exposition of newborn rats to bacterial endotoxin impairs pancreatic enzyme secretion at adult age,” Journal of Physiology and Pharmacology, vol. 58, no. 2, pp. 287–302, 2007. View at Google Scholar · View at Scopus
  33. D. Amsterdam, T. E. Solomon, and J. D. Jamieson, “Sequential dissociation of the exocrine pancreas into lobules, acini, and individual cells,” Methods in Cell Biology, vol. 20, pp. 362–378, 1978. View at Google Scholar · View at Scopus
  34. J. Jaworek, J. Bilski, B. Jachimczak et al., “The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro,” Journal of Physiology and Pharmacology, vol. 51, no. 2, pp. 315–332, 2000. View at Google Scholar
  35. J. Sambrook, E. F. Fritsch, T. Maniatis, and C. Nolan, Eds., Molecular Clonng, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1989.
  36. R. L. Modlin, “Mammalian Toll-like receptors,” Annals of Allergy, Asthma and Immunology, vol. 88, no. 6, pp. 543–587, 2002. View at Google Scholar · View at Scopus
  37. E. Lien and R. R. Ingalls, “Toll-like receptors,” Critical Care Medicine, vol. 30, no. 1, pp. S1–S11, 2002. View at Google Scholar · View at Scopus
  38. S. Y. C. Wong, “Innate immune trouble detectors,” Trends in Immunology, vol. 22, no. 5, pp. 235–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Li, Z. G. Zhou, Q. J. Xia et al., “Toll-like receptor 4 detected in exocrine pancreas and the change of expression in cerulein-induced pancreatitis,” Pancreas, vol. 30, no. 4, pp. 375–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. K. Gao, Z. G. Zhou, Y. Li, and al et, “Immunohistochemical localization of Toll-like receptors 4 in pancreas,” West China Medical Journal, vol. 19, no. 2, pp. 241–242, 2004. View at Google Scholar
  41. M. Hausmann, S. Kiessling, S. Mestermann et al., “Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation,” Gastroenterology, vol. 122, no. 7, pp. 1987–2000, 2002. View at Google Scholar · View at Scopus
  42. H. Miyaso, Y. Morimoto, M. Ozaki et al., “Obstructive jaundice increases sensitivity to lipopolysaccharide via TLR4 up-regulation: possible involvement in gut-derived hepatocyte growth factor-protection of hepatocytes,” Journal of Gastroenterology and Hepatology, vol. 20, pp. 1859–1866, 2005. View at Google Scholar
  43. H. Ikushima, T. Nishida, K. Takeda et al., “Expression of Toll-like receptors 2 and 4 is downregulated after operation,” Surgery, vol. 135, no. 4, pp. 376–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Q. Ding, Y. Li, Z. G. Zhou, C. Wang, L. Zhan, and B. Zhou, “Toll-like receptor 4-mediated apoptosis of pancreatic cells in cerulein-induced acute pancreatitis in mice,” Hepatobiliary and Pancreatic Diseases International, vol. 9, no. 6, pp. 645–650, 2010. View at Google Scholar · View at Scopus
  45. H. Sawa, T. Ueda, Y. Takeyama et al., “Role of toll-like receptor 4 in the pathophysiology of severe acute pancreatitis in mice,” Surgery Today, vol. 37, no. 10, pp. 867–873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Salaun, P. Romero, and S. Lebecque, “Toll-like receptor's two-edged sword: when immunity meets apoptosis,” European Journal of Immunology, vol. 37, no. 12, pp. 3311–3318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. C. Hsu, J. M. Park, K. Zhang et al., “The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4,” Nature, vol. 428, no. 6980, pp. 341–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. D. Bannerman and S. E. Goldblum, “Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 284, no. 6, pp. L899–L914, 2003. View at Google Scholar · View at Scopus
  49. K. Ruckdeschel, G. Pfaffinger, R. Haase et al., “Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages,” Journal of Immunology, vol. 173, no. 5, pp. 3320–3328, 2004. View at Google Scholar · View at Scopus
  50. D. Y. Jung, H. Lee, B. Y. Jung et al., “TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-beta; as a decision maker,” Journal of Immunology, vol. 174, no. 10, pp. 6467–6476, 2005. View at Google Scholar · View at Scopus
  51. O. Equils, D. Lu, M. Gatter et al., “Chlamydia heat shock protein 60 induces trophoblast apoptosis through TLR4,” Journal of Immunology, vol. 177, no. 2, pp. 1257–1263, 2006. View at Google Scholar · View at Scopus
  52. S. J. Pandol, A. K. Saluja, C. W. Imrie, and P. A. Banks, “Acute pancreatitis: bench to the bedside,” Gastroenterology, vol. 132, no. 3, pp. 1127–1151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. S. Gukovskaya and S. J. Pandol, “Cell death pathways in pancreatitis and pancreatic cancer,” Pancreatology, vol. 4, no. 6, pp. 567–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Bhatia, “Apoptosis versus necrosis in acute pancreatitis,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 286, no. 2, pp. G189–G196, 2004. View at Google Scholar · View at Scopus
  55. A. Saluja, B. Hofbauer, Y. Yamaguchi, K. Yamanaka, and M. Steer, “Induction of apoptosis reduces the severity of caerulein-induced pancreatitis in mice,” Biochemical and Biophysical Research Communications, vol. 220, no. 3, pp. 875–878, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. N. N. Danial and S. J. Korsmeyer, “Cell death: critical control points,” Cell, vol. 116, no. 2, pp. 205–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Sutton, D. Criddlea, M. G. Raraty, A. Tepikin, J. P. Neoptolemos, and O. H. Petersen, “Signal transduction, calcium and acute pancreatitis,” Pancreatology, vol. 3, no. 6, pp. 497–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. K. F. Sung, I. V. Odinokova, O. A. Mareninova et al., “Prosurvival Bcl-2 proteins stabilize pancreatic mitochondria and protect against necrosis in experimental pancreatitis,” Experimental Cell Research, vol. 315, no. 11, pp. 1975–1989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Singh, D. K. Bakshi, S. Majumdar, S. K. Arora, R. K. Vasishta, and J. D. Wig, “Mitochondrial dysfunction and apoptosis of acinar cells in chronic pancreatitis,” Journal of Gastroenterology, vol. 43, no. 6, pp. 473–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. H. Yu, H. Kim, and K. H. Kim, “Calcium-dependent apoptotic gene expression in cerulein-treated AR42J cells,” Annals of the New York Academy of Sciences, vol. 1010, pp. 66–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Y. Li, S. Ochs, Z. R. Gao et al., “Regulation of HSP60 and the role of MK2 in a new model of severe experimental pancreatitis,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 297, no. 5, pp. G981–G989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Bonior, J. Jaworek, S. J. Konturek, and W. W. Pawlik, “Increase of heat shock protein gene expression by melatonin in AR42J cells,” Journal of Physiology and Pharmacology, vol. 56, no. 3, pp. 471–481, 2005. View at Google Scholar · View at Scopus
  63. J. Bonior, J. Jaworek, S. J. Konturek, and W. W. Pawlik, “Leptin is the modulator of HSP60 gene expression in AR42J cells,” Journal of Physiology and Pharmacology, vol. 57, no. 7, pp. 135–143, 2006. View at Google Scholar · View at Scopus
  64. Y. Y. Li, S. Lu, K. Li et al., “Down-regulation of HSP60 expression by RNAi increases lipopolysaccharide- and cerulein-induced damages on isolated rat pancreatic tissues,” Cell Stress and Chaperones, vol. 15, no. 6, pp. 965–975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Rakonczay Jr., B. Iványi, I. Varga et al., “Nontoxic heat shock protein coinducer BRX-220 protects against acute pancreatitis in rats,” Free Radical Biology and Medicine, vol. 32, no. 12, pp. 1283–1292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Z. Strowski, G. Sparmann, H. Weber et al., “Caerulein pancreatitis increases mRNA but reduces protein levels of rat pancreatic heat shock proteins,” American Journal of Physiology, vol. 273, no. 4, pp. G937–G945, 1997. View at Google Scholar · View at Scopus
  67. A. S. Gukovskaya, I. Gukovsky, Y. Jung, M. Mouria, and S. J. Pandol, “Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. Roles in cell injury processes of pancreatitis,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22595–22604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. O. A. Mareninova, K. F. Sung, P. Hong et al., “Cell death in pancreatitis: caspases protect from necrotizing pancreatitis,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3370–3381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Vonlaufen, P. A. Phillips, Z. Xu et al., “Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats,” Gut, vol. 60, no. 2, pp. 238–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. V. J. Laine, K. M. Nyman, H. J. Peuravuori, K. Henriksen, M. Parvinen, and T. J. Nevalainen, “Lipopolysaccharide induced apoptosis of rat pancreatic acinar cells,” Gut, vol. 38, no. 5, pp. 747–752, 1996. View at Google Scholar · View at Scopus
  71. K. Kimura, T. Shimosegawa, R. Abe et al., “Low doses of lipopolysaccharide upregulate acinar cell apoptosis in cerulein pancreatitis,” Pancreas, vol. 17, no. 2, pp. 120–126, 1998. View at Google Scholar · View at Scopus