Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2012, Article ID 581695, 14 pages
http://dx.doi.org/10.1155/2012/581695
Review Article

Renin-Angiotensin System Hyperactivation Can Induce Inflammation and Retinal Neural Dysfunction

1Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
2Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
3Department of Cell Biology, The Scripps Research Institute, MB 28, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
4Department of Ophthalmology, Hokkaido University Graduate School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
5Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan

Received 15 October 2011; Revised 9 December 2011; Accepted 4 January 2012

Academic Editor: Michelle C. Callegan

Copyright © 2012 Toshihide Kurihara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Klein, B. E. K. Klein, and K. L. P. Linton, “Prevalence of age-related maculopathy: the Beaver Dam Eye study,” Ophthalmology, vol. 99, no. 6, pp. 933–943, 1992. View at Google Scholar · View at Scopus
  2. J. M. Tielsch, A. Sommer, J. Katz, R. M. Royall, H. A. Quigley, and J. Javitt, “Racial variations in the prevalence of primary open-angle glaucoma: the Baltimore eye survey,” Journal of the American Medical Association, vol. 266, no. 3, pp. 369–374, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Davis, M. R. Fisher, R. E. Gangnon et al., “Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: early treatment diabetic retinopathy study report 18,” Investigative Ophthalmology and Visual Science, vol. 39, no. 2, pp. 233–252, 1998. View at Google Scholar · View at Scopus
  4. M. C. Haigis and B. A. Yankner, “The Aging Stress Response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms Underlying Inflammation in Neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. S. Balaban, S. Nemoto, and T. Finkel, “Mitochondria, oxidants, and aging,” Cell, vol. 120, no. 4, pp. 483–495, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Salzet, L. Deloffre, C. Breton, D. Vieau, and L. Schoofs, “The angiotensin system elements in invertebrates,” Brain Research Reviews, vol. 36, no. 1, pp. 35–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kurihara, Y. Ozawa, K. Shinoda et al., “Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation,” Investigative Ophthalmology and Visual Science, vol. 47, no. 12, pp. 5545–5552, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Kurihara, Y. Ozawa, N. Nagai et al., “Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina,” Diabetes, vol. 57, no. 8, pp. 2191–2198, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. P. Chen, G. M. Scicli, M. Guo et al., “Role of angiotensin II in retinal leukostasis in the diabetic rat,” Experimental Eye Research, vol. 83, no. 5, pp. 1041–1051, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. G. Miller, G. Tan, K. J. Binger et al., “Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function,” Diabetes, vol. 59, no. 12, pp. 3208–3215, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Miyazaki, N. Kitaichi, K. Ohgami et al., “Anti-inflammatory effect of angiotensin type 1 receptor antagonist on endotoxin-induced uveitis in rats,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 5, pp. 747–757, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. F. Mori, T. Hikichi, T. Nagaoka, J. Takahashi, N. Kitaya, and A. Yoshida, “Inhibitory effect of losartan, an AT1 angiotensin II receptor antagonist, on increased leucocyte entrapment in retinal microcirculation of diabetic rats,” British Journal of Ophthalmology, vol. 86, no. 10, pp. 1172–1174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Nagai, K. Izumi-Nagai, Y. Oike et al., “Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-κB pathway,” Investigative Ophthalmology and Visual Science, vol. 48, no. 9, pp. 4342–4350, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. N. Nagai, K. Noda, T. Urano et al., “Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology and Visual Science, vol. 46, no. 3, pp. 1078–1084, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Nagai, Y. Oike, K. Izumi-Nagai et al., “Angiotensin II type 1 receptor-mediated inflammation is required for choroidal neovascularization,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2252–2259, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Nagai, Y. Oike, K. Noda et al., “Suppression of ocular inflammation in endotoxin-induced uveitis by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology and Visual Science, vol. 46, no. 8, pp. 2925–2931, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. Y. Okunuki, Y. Usui, N. Nagai et al., “Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan,” Investigative Ophthalmology and Visual Science, vol. 50, no. 5, pp. 2255–2261, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. L. Wilkinson-Berka, G. Tan, K. Jaworski, and S. Ninkovic, “Valsartan but not Atenolol Improves Vascular Pathology in Diabetic Ren-2 Rat Retina,” American Journal of Hypertension, vol. 20, no. 4, pp. 423–430, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. E. Downie, K. M. Hatzopoulos, M. J. Pianta et al., “Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity,” Journal of Comparative Neurology, vol. 518, no. 1, pp. 41–63, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Fukuda, K. Hirooka, M. Mizote, T. Nakamura, T. Itano, and F. Shiraga, “Neuroprotection against retinal ischemia-reperfusion injury by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3629–3638, 2010. View at Google Scholar · View at Scopus
  22. K. C. Silva, M. A. B. Rosales, S. K. Biswas, J. B. L. De Faria, and J. M. L. De Faria, “Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes,” Diabetes, vol. 58, no. 6, pp. 1382–1390, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. H. Yang, K. Hirooka, K. Fukuda, and F. Shiraga, “Neuroprotective effects of angiotensin II type 1 receptor blocker in a rat model of chronic glaucoma,” Investigative Ophthalmology & Visual Science, vol. 50, no. 12, pp. 5800–5804, 2009. View at Google Scholar · View at Scopus
  24. N. Chaturvedi, M. Porta, R. Klein et al., “Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials,” The Lancet, vol. 372, no. 9647, pp. 1394–1402, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. K. Sjolie, R. Klein, M. Porta et al., “Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial,” The Lancet, vol. 372, no. 9647, pp. 1385–1393, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. Mauer, B. Zinman, R. Gardiner et al., “Renal and retinal effects of enalapril and losartan in type 1 diabetes,” New England Journal of Medicine, vol. 361, no. 1, pp. 40–51, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. H. Goldblatt, J. Lynch, R. F. Hanzal, and W. W. Summerville, “Studies on experimental hypertension : I. The production of persistent elevation of systolic blood pressure by means of renal ischemia,” The Journal of Experimental Medicine, vol. 59, no. 3, pp. 347–379, 1934. View at Google Scholar
  28. J. C. Fasciolo, B. A. Houssay, and A. C. Taquini, “The blood-pressure raising secretion of the ischaemic kidney,” The Journal of Physiology, vol. 94, no. 3, pp. 281–293, 1938. View at Google Scholar
  29. I. H. Page, “On the nature of the pressor action of renin,” The Journal of Experimental Medicine, vol. 70, no. 5, pp. 521–542, 1939. View at Google Scholar
  30. E. Braun-Menendez and I. H. Page, “Suggested revision of nomenclature—angiotensin,” Science, vol. 127, no. 3292, p. 242, 1958. View at Google Scholar · View at Scopus
  31. L. T. Skeggs Jr, J. R. Kahn, and N. P. Shumway, “The preparation and function of the hypertensin-converting enzyme,” The Journal of Experimental Medicine, vol. 103, no. 3, pp. 295–299, 1956. View at Google Scholar
  32. S. Y. Lin and T. L. Goodfriend, “Angiotensin receptors,” The American journal of physiology, vol. 218, no. 5, pp. 1319–1328, 1970. View at Google Scholar · View at Scopus
  33. S. Sarlos, B. Rizkalla, C. J. Moravski, Z. Cao, M. E. Cooper, and J. L. Wilkinson-Berka, “Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin,” American Journal of Pathology, vol. 163, no. 3, pp. 879–887, 2003. View at Google Scholar · View at Scopus
  34. Q. Xue, C. Dasgupta, M. Chen, and L. Zhang, “Foetal hypoxia increases cardiac AT2R expression and subsequent vulnerability to adult ischaemic injury,” Cardiovascular Research, vol. 89, no. 2, pp. 300–308, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. K. Sasaki, Y. Yamano, S. Bardhan et al., “Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor,” Nature, vol. 351, no. 6323, pp. 230–233, 1991. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. T. J. Murphy, R. W. Alexander, K. K. Griendling, M. S. Runge, and K. E. Bernstein, “Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor,” Nature, vol. 351, no. 6323, pp. 233–236, 1991. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Ushio-Fukai, K. K. Griendling, M. Akers, P. R. Lyons, and R. W. Alexander, “Temporal dispersion of activation of phospholipase C-β1 and -γ isoforms by angiotensin II in vascular smooth muscle cells. Role of αq/11, α12, and βγ G protein subunits,” The Journal of Biological Chemistry, vol. 273, no. 31, pp. 19772–19777, 1998. View at Google Scholar
  38. J. M. Anderson, M. A. Gimbrone, and R. W. Alexander, “Angiotensin II stimulates phosphorylation of the myosin light chain in cultured vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 256, no. 10, pp. 4693–4696, 1981. View at Google Scholar · View at Scopus
  39. D. E. Dostal, T. Murahashi, and M. J. Peach, “Regulation of cytosolic calcium by angiotensins in vascular smooth muscle,” Hypertension, vol. 15, no. 6, pp. 815–822, 1990. View at Google Scholar · View at Scopus
  40. F. Soubrier, F. Alhenc-Gelas, C. Hubert et al., “Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9386–9390, 1988. View at Google Scholar · View at Scopus
  41. L. J. Dell'Italia, Q. C. Meng, E. Balcells et al., “Compartmentalization of angiotensin II generation in the dog heart: evidence for independent mechanisms in intravascular and interstitial spaces,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 253–258, 1997. View at Google Scholar · View at Scopus
  42. H. M. Kimbrough, E. D. Vaughan, R. M. Carey, and C. R. Ayers, “Effect of intrarenal angiotensin II blockade on renal function in conscious dogs,” Circulation Research, vol. 40, no. 2, pp. 174–178, 1977. View at Google Scholar · View at Scopus
  43. J. W. Ryan, “Renin-like enzyme in the adrenal gland,” Science, vol. 158, no. 3808, pp. 1589–1590, 1967. View at Google Scholar · View at Scopus
  44. D. Ganten, J. L. Minnich, P. Granger et al., “Angiotensin-forming enzyme in brain tissue,” Science, vol. 173, no. 3991, pp. 64–65, 1971. View at Google Scholar · View at Scopus
  45. A. Ichihara, M. Hayashi, Y. Kaneshiro et al., “Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin,” Journal of Clinical Investigation, vol. 114, no. 8, pp. 1128–1135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Nguyen, F. Delarue, C. Burcklé, L. Bouzhir, T. Giller, and J. D. Sraer, “Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin,” Journal of Clinical Investigation, vol. 109, no. 11, pp. 1417–1427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Cruciat, B. Ohkawara, S. P. Acebron et al., “Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling,” Science, vol. 327, no. 5964, pp. 459–463, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. B. Marrero, B. Schieffer, W. G. Paxton et al., “Direct stimulation of Jak/STAT pathway by the anglotensin II AT1 receptor,” Nature, vol. 375, no. 6528, pp. 247–250, 1995. View at Google Scholar · View at Scopus
  49. B. Schieffer, M. Luchtefeld, S. Braun, A. Hilfiker, D. Hilfiker-Kleiner, and H. Drexler, “Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction,” Circulation Research, vol. 87, no. 12, pp. 1195–1201, 2000. View at Google Scholar · View at Scopus
  50. S. Kim, Y. Izumi, M. Yano et al., “Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery,” Circulation, vol. 97, no. 17, pp. 1731–1737, 1998. View at Google Scholar · View at Scopus
  51. D. F. Liao, J. L. Duff, G. Daum, S. L. Pelech, and B. C. Berk, “Angiotensin II stimulates MAP kinase kinase kinase activity in vascular smooth muscle cells: role of raf,” Circulation Research, vol. 79, no. 5, pp. 1007–1014, 1996. View at Google Scholar · View at Scopus
  52. D. F. Liao, B. Monia, N. Dean, and B. C. Berk, “Protein kinase C-ζ mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 272, no. 10, pp. 6146–6150, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Nishida, S. Tanabe, Y. Maruyama et al., “Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 18434–18441, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. Rajagopalan, S. Kurz, T. Münzel et al., “Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone,” Journal of Clinical Investigation, vol. 97, no. 8, pp. 1916–1923, 1996. View at Google Scholar · View at Scopus
  55. R. M. Touyz, X. Chen, F. Tabet et al., “Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II,” Circulation Research, vol. 90, no. 11, pp. 1205–1213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw, and R. W. Alexander, “Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells,” Circulation Research, vol. 74, no. 6, pp. 1141–1148, 1994. View at Google Scholar · View at Scopus
  57. P. N. Seshiah, D. S. Weber, P. Rocic, L. Valppu, Y. Taniyama, and K. K. Griendling, “Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators,” Circulation Research, vol. 91, no. 5, pp. 406–413, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Moriguchi, H. Matsubara, Y. Mori et al., “Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-β synthesis via transcriptional and posttranscriptional mechanisms,” Circulation Research, vol. 84, no. 9, pp. 1073–1084, 1999. View at Google Scholar · View at Scopus
  59. S. Kagiyama, S. Eguchi, G. D. Frank, T. Inagami, Y. C. Zhang, and M. I. Phillips, “Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense,” Circulation, vol. 106, no. 8, pp. 909–912, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. D. N. Muller, R. Dechend, E. M. A. Mervaala et al., “NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats,” Hypertension, vol. 35, no. 1, pp. 193–201, 2000. View at Google Scholar · View at Scopus
  61. A. Fiebeler, F. Schmidt, D. N. Müller et al., “Mineralocorticoid receptor affects AP-1 and nuclear factor-κB activation in angiotensin II-induced cardiac injury,” Hypertension, vol. 37, no. 2, pp. 787–793, 2001. View at Google Scholar · View at Scopus
  62. M. Hernández-Presa, C. Bustos, M. Ortego et al., “Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis,” Circulation, vol. 95, no. 6, pp. 1532–1541, 1997. View at Google Scholar · View at Scopus
  63. S. Kudoh, I. Komuro, T. Mizuno et al., “Angiotensin II stimulates c-jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats,” Circulation Research, vol. 80, no. 1, pp. 139–146, 1997. View at Google Scholar · View at Scopus
  64. P. L. Puri, M. L. Avantaggiati, V. L. Burgio et al., “Reactive oxygen intermediates mediate angiotensin II-induced c-Jun·c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells,” Journal of Biological Chemistry, vol. 270, no. 38, pp. 22129–22134, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. D. E. Vaughan, S. A. Lazos, and K. Tong, “Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis,” Journal of Clinical Investigation, vol. 95, no. 3, pp. 995–1001, 1995. View at Google Scholar · View at Scopus
  66. A. Daugherty, M. W. Manning, and L. A. Cassis, “Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1605–1612, 2000. View at Google Scholar · View at Scopus
  67. M. A. Ondetti, B. Rubin, and D. W. Cushman, “Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents,” Science, vol. 196, no. 4288, pp. 441–444, 1977. View at Google Scholar · View at Scopus
  68. P. B. M. W. M. Timmermans, D. J. Carini, A. T. Chiu et al., “Angiotensin II receptor antagonists: from discovery to antihypertensive drugs,” Hypertension, vol. 18, no. 5, pp. I-136–I-142, 1991. View at Google Scholar · View at Scopus
  69. P. C. Wong, W. A. Price, A. T. Chiu et al., “Nonpeptide angiotensin II receptor antagonists. Studies with EXP9270 and DuP 753,” Hypertension, vol. 15, no. 6, pp. 823–834, 1990. View at Google Scholar · View at Scopus
  70. D. R. Green, L. Galluzzi, and G. Kroemer, “Mitochondria and the autophagy-inflammation-cell death axis in organismal aging,” Science, vol. 333, no. 6046, pp. 1109–1112, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. G. Baiardi, C. Bregonzio, M. Jezova, I. Armando, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade prolongs the lifespan of spontaneously hypertensive rats and reduces stress-induced release of catecholamines, glucocorticoids, and vasopressin,” Annals of the New York Academy of Sciences, vol. 1018, pp. 131–136, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. W. Linz, H. Heitsch, B. A. Schölkens, and G. Wiemer, “Long-term angiotensin II type 1 receptor blockade with fonsartan doubles lifespan of hypertensive rats,” Hypertension, vol. 35, no. 4, pp. 908–913, 2000. View at Google Scholar · View at Scopus
  73. W. Linz, T. Jessen, R. H. A. Becker, B. A. Schölkens, and G. Wiemer, “Long-term ACE inhibition doubles lifespan of hypertensive rats,” Circulation, vol. 96, no. 9, pp. 3164–3172, 1997. View at Google Scholar · View at Scopus
  74. A. Benigni, D. Corna, C. Zoja et al., “Disruption of the Ang II type 1 receptor promotes longevity in mice,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 524–530, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. F. A. Mendelsohn, R. Quirion, J. M. Saavedra, G. Aguilera, and K. J. Catt, “Autoradiographic localization of angiotensin II receptors in rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 5, pp. 1575–1579, 1984. View at Google Scholar · View at Scopus
  76. J. M. Saavedra, F. M.A. Correa, and L. M. Plunkett, “Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats,” Nature, vol. 320, no. 6064, pp. 758–760, 1986. View at Google Scholar
  77. J. Buggy, A. E. Fisher, and W. E. Hoffman, “Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin,” Science, vol. 190, no. 4209, pp. 72–74, 1975. View at Google Scholar · View at Scopus
  78. M. Van Houten, E. L. Schiffrin, and J. F. E. Mann, “Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain,” Brain Research, vol. 186, no. 2, pp. 480–485, 1980. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Castren and J. M. Saavedra, “Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 2, pp. 725–729, 1989. View at Google Scholar · View at Scopus
  80. C. Chevillard and J. M. Saavedra, “High angiotensin-converting enzyme activity in the neurohypophysis of Brattleboro rats,” Science, vol. 216, no. 4546, pp. 646–647, 1982. View at Google Scholar · View at Scopus
  81. S. Landas, M. I. Phillips, J. F. Stamler, and M. K. Raizada, “Visualization of specific angiotensin II binding sites in the brain by fluorescent microscopy,” Science, vol. 210, no. 4471, pp. 791–793, 1980. View at Google Scholar · View at Scopus
  82. M. C. Zimmerman, E. Lazartigues, J. A. Lang et al., “Superoxide mediates the actions of angiotensin II in the central nervous system,” Circulation Research, vol. 91, no. 11, pp. 1038–1045, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. A. H. J. Danser, M. A. Van Den Dorpel, J. Deinum et al., “Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy,” Journal of Clinical Endocrinology and Metabolism, vol. 68, no. 1, pp. 160–167, 1989. View at Google Scholar · View at Scopus
  84. J. Deinum, F. H. M. Derkx, A. H. J. Danser, and M. A. D. H. Schalekamp, “Identification and quantification of renin and prorenin in the bovine eye,” Endocrinology, vol. 126, no. 3, pp. 1673–1682, 1990. View at Google Scholar · View at Scopus
  85. S. J. Sramek, I. H. L. Wallow, R. P. Day, and E. N. Ehrlich, “Ocular renin-angiotensin: immunohistochemical evidence for the presence of prorenin in eye tissue,” Investigative Ophthalmology and Visual Science, vol. 29, no. 11, pp. 1749–1752, 1988. View at Google Scholar · View at Scopus
  86. J. L. Berka, A. J. Stubbs, D. Z. M. Wang et al., “Renin-containing muller cells of the retina display endocrine features,” Investigative Ophthalmology and Visual Science, vol. 36, no. 7, pp. 1450–1458, 1995. View at Google Scholar · View at Scopus
  87. C. R. Brandt, A. M. Pumfery, B. Micales et al., “Renin mRNA is synthesized locally in rat ocular tissues,” Current Eye Research, vol. 13, no. 10, pp. 755–763, 1994. View at Google Scholar · View at Scopus
  88. S. Satofuka, A. Ichihara, N. Nagai et al., “Suppression of ocular inflammation in endotoxin-induced uveitis by inhibiting nonproteolytic activation of prorenin,” Investigative Ophthalmology & Visual Science, vol. 47, no. 6, pp. 2686–2692, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. J. L. Wilkinson-Berka, R. Heine, G. Tan et al., “RILLKKMPSV Influences the vasculature, neurons and glia, and (Pro)renin receptor expression in the Retina,” Hypertension, vol. 55, no. 6, pp. 1454–1460, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. S. J. Sramek, I. H. L. Wallow, D. A. Tewksbury, C. R. Brandt, and G. L. Poulsen, “An ocular renin-angiotensin system: immunohistochemistry of angiotensinogen,” Investigative Ophthalmology and Visual Science, vol. 33, no. 5, pp. 1627–1632, 1992. View at Google Scholar · View at Scopus
  91. C. Gerhardinger, M. B. Costa, M. C. Coulombe, I. Toth, T. Hoehn, and P. Grosu, “Expression of acute-phase response proteins in retinal Muller cells in diabetes,” Investigative Ophthalmology and Visual Science, vol. 46, no. 1, pp. 349–357, 2005. View at Publisher · View at Google Scholar · View at PubMed
  92. J. Wagner, A. H. J. Danser, F. H. M. Derkx et al., “Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system,” British Journal of Ophthalmology, vol. 80, no. 2, pp. 159–163, 1996. View at Google Scholar · View at Scopus
  93. R. Igic and V. Kojovic, “Angiotensin I converting enzyme (kininase II) in ocular tissues,” Experimental Eye Research, vol. 30, no. 3, pp. 299–303, 1980. View at Google Scholar · View at Scopus
  94. G. Ferrari-Dileo, J. W. Ryan, E. J. Rockwood, E. B. Davis, and D. R. Anderson, “Angiotensin-converting enzyme in bovine, feline, and human ocular tissues,” Investigative Ophthalmology and Visual Science, vol. 29, no. 6, pp. 876–881, 1988. View at Google Scholar · View at Scopus
  95. E. Savaskan, K. U. Löffler, F. Meier, F. Müller-Spahn, J. Flammer, and P. Meyer, “Immunohistochemical localization of angiotensin-converting enzyme, angiotensin II and AT1 receptor in human ocular tissues,” Ophthalmic Research, vol. 36, no. 6, pp. 312–320, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. T. Kida, T. Ikeda, M. Nishimura et al., “Renin-angiotensin system in proliferative diabetic retinopathy and its gene expression in cultured human Müller cells,” Japanese Journal of Ophthalmology, vol. 47, no. 1, pp. 36–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. A. H. J. Danser, F. H. M. Derkx, P. J. J. Admiraal, J. Deinum, P. T. V. M. De Jong, and M. A. D. H. Schalekamp, “Angiotensin levels in the eye,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 1008–1018, 1994. View at Google Scholar · View at Scopus
  98. K. H. Datum and E. Zrenner, “Angiotensin-like immunoreactive cells in the chicken retina,” Experimental Eye Research, vol. 53, no. 2, pp. 157–165, 1991. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Mallorga, R. W. Babilon, and M. F. Sugrue, “Angiotensin II receptors labelled with 125I-[Sar1,Ile8]-AII in albino rabbit ocular tissues,” Current Eye Research, vol. 8, no. 8, pp. 841–849, 1989. View at Google Scholar · View at Scopus
  100. P. D. Senanayake, J. Drazba, K. Shadrach et al., “Angiotensin II and its receptor subtypes in the human retina,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3301–3311, 2007. View at Publisher · View at Google Scholar · View at PubMed
  101. C. Sun, H. Li, L. Leng, M. K. Raizada, R. Bucala, and C. Sumners, “Macrophage migration inhibitory factor: an intracellular inhibitor of angiotensin II-induced increases in neuronal activity,” Journal of Neuroscience, vol. 24, no. 44, pp. 9944–9952, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. D. P. Li, S. R. Chen, and H. L. Pan, “Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition,” Journal of Neuroscience, vol. 23, no. 12, pp. 5041–5049, 2003. View at Google Scholar · View at Scopus
  103. E. Guenther, S. Schmid, B. Hewig, and K. Kohler, “Two-fold effect of angiotensin II on voltage-dependent calcium currents in rat retinal ganglion cells,” Brain Research, vol. 718, no. 1-2, pp. 112–116, 1996. View at Publisher · View at Google Scholar · View at Scopus
  104. E. Demant, K. Nagahara, and G. Niemeyer, “Effects of changes in systemic blood pressure on the electroretinogram of the cat: evidence for retinal autoregulation,” Investigative Ophthalmology and Visual Science, vol. 23, no. 5, pp. 683–687, 1982. View at Google Scholar
  105. P. C. Jacobi, H. Osswald, B. Jurklies, and E. Zrenner, “Neuromodulatory effects of the renin-angiotensin system on the cat electroretinogram,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 973–980, 1994. View at Google Scholar
  106. B. Jurklies, A. Eckstein, P. Jacobi, K. Kohler, T. Risler, and E. Zrenner, “The renin-angiotensin system–a possible neuromodulator in the human retina?” German journal of ophthalmology, vol. 4, no. 3, pp. 144–150, 1995. View at Google Scholar · View at Scopus
  107. K. Hashizume, Y. Mashima, T. Fumayama et al., “Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 1993–2001, 2005. View at Publisher · View at Google Scholar · View at PubMed
  108. Y.-P. Liu, T. Kuznetsova, L. Thijs et al., “Are retinal microvascular phenotypes associated with the 1675G/A polymorphism in the angiotensin II Type-2 receptor gene,” American Journal of Hypertension, vol. 24, no. 12, pp. 1300–1305, 2011. View at Publisher · View at Google Scholar · View at PubMed
  109. K. Yuki, Y. Ozawa, T. Yoshida et al., “Retinal ganglion cell loss in superoxide dismutase 1 deficiency,” Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4143–4150, 2011. View at Google Scholar
  110. Y. Imamura, S. Noda, K. Hashizume et al., “Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11282–11287, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994. View at Publisher · View at Google Scholar · View at Scopus
  112. E. S. Gragoudas, A. P. Adamis, E. T. Cunningham, M. Feinsod, and D. R. Guyer, “Pegaptanib for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 351, no. 27, pp. 2805–2816, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. P. J. Rosenfeld, D. M. Brown, J. S. Heier et al., “Ranibizumab for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 355, no. 14, pp. 1419–1431, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164 is proinflammatory in the diabetic retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 5, pp. 2155–2162, 2003. View at Publisher · View at Google Scholar
  115. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. S. Ishida, K. Yamashiro, T. Usui et al., “Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease,” Nature Medicine, vol. 9, no. 6, pp. 781–788, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. A. Otani, H. Takagi, K. Suzuma, and Y. Honda, “Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells,” Circulation Research, vol. 82, no. 5, pp. 619–628, 1998. View at Google Scholar · View at Scopus
  118. A. Otani, H. Takagi, H. Oh, S. Koyama, and Y. Honda, “Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells,” Diabetes, vol. 50, no. 4, pp. 867–875, 2001. View at Google Scholar · View at Scopus
  119. A. Otani, H. Takagi, H. Oh et al., “Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes,” Investigative Ophthalmology and Visual Science, vol. 41, no. 5, pp. 1192–1199, 2000. View at Google Scholar
  120. L. E.H. Smith, E. Wesolowski, A. McLellan et al., “Oxygen-induced retinopathy in the mouse,” Investigative Ophthalmology and Visual Science, vol. 35, no. 1, pp. 101–111, 1994. View at Google Scholar
  121. T. Alon, I. Hemo, A. Itin, J. Pe'er, J. Stone, and E. Keshet, “Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity,” Nature Medicine, vol. 1, no. 10, pp. 1024–1028, 1995. View at Google Scholar · View at Scopus
  122. C. J. Moravski, D. J. Kelly, M. E. Cooper et al., “Retinal neovascularization is prevented by blockade of the renin-angiotensin system,” Hypertension, vol. 36, no. 6, pp. 1099–1104, 2000. View at Google Scholar · View at Scopus
  123. M. Lonchampt, L. Pennel, and J. Duhault, “Hyperoxia/normoxia-driven retinal angiogenesis in mice: a role for angiotensin II,” Investigative Ophthalmology and Visual Science, vol. 42, no. 2, pp. 429–432, 2001. View at Google Scholar
  124. S. Satofuka, A. Ichihara, N. Nagai et al., “Role of nonproteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 48, no. 1, pp. 422–429, 2007. View at Publisher · View at Google Scholar · View at PubMed
  125. H. Funatsu, H. Yamashita, T. Ikeda, Y. Nakanishi, S. Kitano, and S. Hori, “Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with diabetic macular edema and other retinal disorders,” American Journal of Ophthalmology, vol. 133, no. 4, pp. 537–543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. H. Funatsu, H. Yamashita, Y. Nakanishi, and S. Hori, “Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 86, no. 3, pp. 311–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Google Scholar · View at Scopus
  128. M. Larsen, E. Hommel, H. H. Parving, and H. Lund-Andersen, “Protective effect of captopril on the blood-retina barrier in normotensive insulin-dependent diabetic patients with nephropathy and background retinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 228, no. 6, pp. 505–509, 1990. View at Google Scholar · View at Scopus
  129. B. Van Kooij, R. Fijnheer, J. De Boer et al., “A randomized, masked, cross-over trial of lisinopril for inflammatory macular edema,” American Journal of Ophthalmology, vol. 141, no. 4, pp. 646–651, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. S. T. Knudsen, T. Bek, P. L. Poulsen, M. N. Hove, M. Rehling, and C. E. Mogensen, “Effects of losartan on diabetic maculopathy in type 2 diabetic patients: a randomized, double-masked study,” Journal of Internal Medicine, vol. 254, no. 2, pp. 147–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. J. H. Kim, J. H. Kim, Y. S. Yu, C. S. Cho, and K.-W. Kim, “Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 621–628, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. J. A. Phipps, A. C. Clermont, S. Sinha, T. J. Chilcote, S. E. Bursell, and E. P. Feener, “Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability,” Hypertension, vol. 53, no. 2, pp. 175–181, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. H. Nakamura, M. Yamazaki, T. Ohyama et al., “Role of angiotensin II type 1 receptor on retinal vascular leakage in a rat oxygen-induced retinopathy model,” Ophthalmic Research, vol. 41, no. 4, pp. 210–215, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. N. Chaturvedi, A. K. Sjolie, J. M. Stephenson et al., “Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID study group. EURODIAB controlled trial of lisinopril in insulin-dependent diabetes mellitus,” The Lancet, vol. 351, no. 9095, pp. 28–31, 1998. View at Google Scholar
  135. Y. Shirao and K. Kawasaki, “Electrical responses from diabetic retina,” Progress in Retinal and Eye Research, vol. 17, no. 1, pp. 59–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  136. A. J. Barber, E. Lieth, S. A. Khin, D. A. Antonetti, A. G. Buchanan, and T. W. Gardner, “Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin,” Journal of Clinical Investigation, vol. 102, no. 4, pp. 783–791, 1998. View at Google Scholar · View at Scopus
  137. A. Ottlecz and T. Bensaoula, “Captopril ameliorates the decreased Na+,K+-ATPase activity in the retina of streptozotocin-induced diabetic rats,” Investigative Ophthalmology and Visual Science, vol. 37, no. 8, pp. 1633–1641, 1996. View at Google Scholar
  138. R. E. Gilbert, D. J. Kelly, A. J. Cox et al., “Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes,” Diabetologia, vol. 43, no. 11, pp. 1360–1367, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. J. Z. Zhang, X. Xi, L. Gao, and T. S. Kern, “Captopril inhibits capillary degeneration in the early stages of diabetic retinopathy,” Current Eye Research, vol. 32, no. 10, pp. 883–889, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. Z. Zheng, H. Chen, G. Ke et al., “Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway,” Diabetes, vol. 58, no. 4, pp. 954–964, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. S. I. Yamagishi, M. Takeuchi, T. Matsui, K. Nakamura, T. Imaizumi, and H. Inoue, “Angiotensin II augments advanced glycation end product-induced pericyte apoptosis through RAGE overexpression,” FEBS Letters, vol. 579, no. 20, pp. 4265–4270, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. S. Satofuka, A. Ichihara, N. Nagai et al., “(Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation,” Diabetes, vol. 58, no. 7, pp. 1625–1633, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. J. J. Mullins, J. Peters, and D. Ganten, “Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene,” Nature, vol. 344, no. 6266, pp. 541–544, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. C. J. Moravski, S. L. Skinner, A. J. Stubbs et al., “The renin-angiotensin system influences ocular endothelial cell proliferation in diabetes: transgenic and interventional studies,” American Journal of Pathology, vol. 162, no. 1, pp. 151–160, 2003. View at Google Scholar · View at Scopus
  145. A. A. Dosso, E. Rungger-Brändle, and P. M. Leuenberger, “Ultrastructural alterations in capillaries of the diabetic hypertensive rat retina: protective effects of ACE inhibition,” Diabetologia, vol. 47, no. 7, pp. 1196–1201, 2004. View at Google Scholar · View at Scopus
  146. A. G. Miller, G. Tan, K. J. Binger et al., “Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function,” Diabetes, vol. 59, no. 12, pp. 3208–3215, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. P. Chen, A. M. Guo, P. A. Edwards, G. Trick, and A. G. Scicli, “Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 293, no. 4, pp. R1619–R1629, 2007. View at Publisher · View at Google Scholar · View at PubMed
  148. J. Z. Zhang, L. Gao, M. Widness, X. Xi, and T. S. Kern, “Captopril inhibits glucose accumulation in retinal cells in diabetes,” Investigative Ophthalmology and Visual Science, vol. 44, no. 9, pp. 4001–4005, 2003. View at Publisher · View at Google Scholar
  149. X. Zhang, M. Lassila, M. E. Cooper, and Z. Cao, “Retinal Expression of Vascular Endothelial Growth Factor Is Mediated by Angiotensin Type 1 and Type 2 Receptors,” Hypertension, vol. 43, no. 2, pp. 276–281, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. E. Sakurai, A. Anand, B. K. Ambati, N. Van Rooijen, and J. Ambati, “Macrophage depletion inhibits experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3578–3585, 2003. View at Publisher · View at Google Scholar
  151. C. Tsutsumi, K. H. Sonoda, K. Egashira et al., “The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization,” Journal of Leukocyte Biology, vol. 74, no. 1, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. D. G. Espinosa-Heidmann, I. J. Suner, E. P. Hernandez, D. Monroy, K. G. Csaky, and S. W. Cousins, “Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3586–3592, 2003. View at Publisher · View at Google Scholar
  153. N. Nagai, Y. Oike, K. Izumi-Nagai et al., “Suppression of choroidal neovascularization hy inhibiting angiotensin-converting enzyme: minimal role of bradykinin,” Investigative Ophthalmology and Visual Science, vol. 48, no. 5, pp. 2321–2326, 2007. View at Publisher · View at Google Scholar · View at PubMed
  154. S. Satofuka, A. Ichihara, N. Nagai et al., “(Pro)renin receptor promotes choroidal neovascularization by activating its signal transduction and tissue renin-angiotensin system,” American Journal of Pathology, vol. 173, no. 6, pp. 1911–1918, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. G. E. Striker, F. Praddaude, O. Alcazar, S. W. Cousins, and M. E. Marin-Castaño, “Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II,” American Journal of Physiology, vol. 295, no. 6, pp. C1633–C1646, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. F. Praddaude, S. W. Cousins, C. Pêcher, and M. E. Marin-Castaño, “Angiotensin II-induced hypertension regulates AT1 receptor subtypes and extracellular matrix turnover in mouse retinal pigment epithelium,” Experimental Eye Research, vol. 89, no. 1, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  157. O. Alcazar, S. W. Cousins, G. E. Striker, and M. E. Marin-Castano, “(Pro)renin receptor is expressed in human retinal pigment epithelium and participates in extracellular matrix remodeling,” Experimental Eye Research, vol. 89, no. 5, pp. 638–647, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. M. Pons, S. W. Cousins, O. Alcazar, G. E. Striker, and M. E. Marin-Castano, “Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin ii receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration,” American Journal of Pathology, vol. 178, no. 6, pp. 2665–2681, 2011. View at Publisher · View at Google Scholar · View at PubMed
  159. T. H. Wheeler-Schilling, K. Kohler, M. Sautter, and E. Guenther, “Angiotensin II receptor subtype gene expression and cellular localization in the retina and non-neuronal ocular tissues of the rat,” European Journal of Neuroscience, vol. 11, no. 10, pp. 3387–3394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  160. A. B. Cullinane, P. S. Leung, J. Ortego, M. Coca-Prados, and B. J. Harvey, “Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium,” British Journal of Ophthalmology, vol. 86, no. 6, pp. 676–683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  161. C. Costagliola, R. Di Benedetto, L. De Caprio, R. Verde, and L. Mastropasqua, “Effect of oral captopril (SQ 14225) on intraocular pressure in man,” European Journal of Ophthalmology, vol. 5, no. 1, pp. 19–25, 1995. View at Google Scholar · View at Scopus
  162. C. Costagliola, M. Verolino, M. Leonarda De Rosa, G. Iaccarino, M. Ciancaglini, and L. Mastropasqua, “Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects,” Experimental Eye Research, vol. 71, no. 2, pp. 167–171, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. R. F. Wang, S. M. Podos, T. W. Mittag, and T. Yokoyoma, “Effect of CS-088, an angiotensin AT1 receptor antagonist, on intraocular pressure in glaucomatous monkey eyes,” Experimental Eye Research, vol. 80, no. 5, pp. 629–632, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. G. B. Shah, S. Sharma, A. A. Mehta, and R. K. Goyal, “Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma,” Journal of Cardiovascular Pharmacology, vol. 36, no. 2, pp. 169–175, 2000. View at Publisher · View at Google Scholar
  165. W. H. Constad, P. Fiore, C. Samson, and A. A. Cinotti, “Use of an angiotensin converting enzyme inhibitor in ocular hypertension and primary open-angle glaucoma,” American Journal of Ophthalmology, vol. 105, no. 6, pp. 674–677, 1988. View at Google Scholar · View at Scopus
  166. M. Platten, S. Youssef, M. H. Eun et al., “Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 35, pp. 14948–14953, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. T. V. Lanz, Z. Ding, P. P. Ho et al., “Angiotensin II sustains brain inflammation in mice via TGF-β,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2782–2794, 2010. View at Publisher · View at Google Scholar · View at PubMed
  168. T. Ito, H. Yamakawa, C. Bregonzio, J. A. Terron, A. Falcon-Neri, and J. M. Saavedra, “Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist,” Stroke, vol. 33, no. 9, pp. 2297–2303, 2002. View at Publisher · View at Google Scholar
  169. S. Chen, G. Li, W. Zhang et al., “Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 297, no. 5, pp. R1526–R1531, 2009. View at Publisher · View at Google Scholar · View at PubMed
  170. H. Yamakawa, M. Jezova, H. Ando, and J. M. Saavedra, “Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 3, pp. 371–380, 2003. View at Google Scholar
  171. M. A. Fleegal-Demotta, S. Doghu, and W. A. Banks, “Angiotensin II modulates BBB permeability via activation of the AT 1 receptor in brain endothelial cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 640–647, 2009. View at Publisher · View at Google Scholar · View at PubMed
  172. M. A. Millan, D. M. Jacobowitz, G. Aguilera, and K. J. Catt, “Differential distribution of AT1 and AT2 angiotensin II receptor subtypes in the rat brain during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11440–11444, 1991. View at Google Scholar · View at Scopus
  173. R. Lucius, S. Gallinat, P. Rosenstiel, T. Herdegen, J. Sievers, and T. Unger, “The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats,” Journal of Experimental Medicine, vol. 188, no. 4, pp. 661–670, 1998. View at Publisher · View at Google Scholar · View at Scopus
  174. M. Iwai, H. W. Liu, R. Chen et al., “Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation,” Circulation, vol. 110, no. 7, pp. 843–848, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. T. Unger, “The role of the renin-angiotensin system in the development of cardiovascular disease,” American Journal of Cardiology, vol. 89, supplement 2A, pp. 3A–10A, 2002. View at Google Scholar
  176. I. Armando, A. Carranza, Y. Nishimura et al., “Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress,” Endocrinology, vol. 142, no. 9, pp. 3880–3889, 2001. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Okuyama, T. Sakagawa, F. Sugiyama, A. Fukamizu, and K. Murakami, “Reduction of depressive-like behavior in mice lacking angiotensinogen,” Neuroscience Letters, vol. 261, no. 3, pp. 167–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Shekhar, P. L. Johnson, T. J. Sajdyk et al., “Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus,” Journal of Neuroscience, vol. 26, no. 36, pp. 9205–9215, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  179. D. Zhu, J. Shi, Y. Zhang et al., “Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats,” PLoS ONE, vol. 6, no. 1, Article ID e16037, 2011. View at Publisher · View at Google Scholar · View at PubMed
  180. J. Wang, L. Ho, L. Chen, Z. Zhao, W. Zao, and X. Qian, “Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease,” Hipertension, vol. 25, no. 2, pp. 85–86, 2008. View at Publisher · View at Google Scholar
  181. K. Zou, H. Yamaguchi, H. Akatsu et al., “Angiotensin-converting enzyme converts amyloid β-protein 1–42 (Aβ(1–42)) to Aβ(1–40), and its inhibition enhances brain Aβ deposition,” The Journal of Neuroscience, vol. 27, no. 32, pp. 8628–8635, 2007. View at Google Scholar
  182. S. Shaw, M. Bencherif, and M. B. Marrero, “Angiotensin II Blocks Nicotine-Mediated Neuroprotection against β-Amyloid (1-42) via Activation of the Tyrosine Phosphatase SHP-1,” Journal of Neuroscience, vol. 23, no. 35, pp. 11224–11228, 2003. View at Google Scholar · View at Scopus
  183. B. V. Bui, J. A. Armitage, M. Tolcos, M. E. Cooper, and A. J. Vingrys, “ACE inhibition salvages the visual loss caused by diabetes,” Diabetologia, vol. 46, no. 3, pp. 401–408, 2003. View at Google Scholar · View at Scopus
  184. J. A. Phipps, J. L. Wilkinson-Berka, and E. L. Fletcher, “Retinal dysfunction in diabetic ren-2 rats is ameliorated by treatment with valsartan but not atenolol,” Investigative Ophthalmology and Visual Science, vol. 48, no. 2, pp. 927–934, 2007. View at Publisher · View at Google Scholar · View at PubMed
  185. Y. Ozawa, K. Nakao, T. Kurihara et al., “Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24561–24570, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  186. Y. Ozawa, K. Nakao, T. Shimazaki et al., “SOCS3 is required to temporally fine-tune photoreceptor cell differentiation,” Developmental Biology, vol. 303, no. 2, pp. 591–600, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  187. Y. Ozawa, K. Nakao, T. Shimazaki et al., “Downregulation of STAT3 activation is required for presumptive rod photoreceptor cells to differentiate in the postnatal retina,” Molecular and Cellular Neuroscience, vol. 26, no. 2, pp. 258–270, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  188. Y. Ozawa, T. Kurihara, K. Tsubota, and H. Okano, “Regulation of posttranscriptional modification as a possible therapeutic approach for retinal neuroprotection,” Journal of Ophthalmology, vol. 2011, Article ID 506137, 8 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  189. M. Miyoshi, K. Miyano, N. Moriyama, M. Taniguchi, and T. Watanabe, “Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor κB and activator protein-1 activation,” European Journal of Neuroscience, vol. 27, no. 2, pp. 343–351, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  190. J. Benicky, E. Sanchez-Lemus, J. Pavel, and J. M. Saavedra, “Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery,” Cellular and Molecular Neurobiology, vol. 29, no. 6-7, pp. 781–792, 2009. View at Publisher · View at Google Scholar · View at PubMed
  191. M. R. Song and A. Ghosh, “FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation,” Nature Neuroscience, vol. 7, no. 3, pp. 229–235, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  192. L. E. Downie, M. J. Pianta, A. J. Vingrys, J. L. Wilkinson-Berka, and E. L. Fletcher, “AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy,” GLIA, vol. 56, no. 10, pp. 1076–1090, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  193. S. Okada, M. Nakamura, H. Katoh et al., “Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury,” Nature Medicine, vol. 12, no. 7, pp. 829–834, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  194. E. R. Buchi, “Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult:an electron microscopic study. I. Ganglion cell layer and inner nuclear layer,” Experimental Eye Research, vol. 55, no. 4, pp. 605–613, 1992. View at Publisher · View at Google Scholar · View at Scopus
  195. M. Berkelaar, D. B. Clarke, Y. C. Wang, G. M. Bray, and A. J. Aguayo, “Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats,” Journal of Neuroscience, vol. 14, no. 7, pp. 4368–4374, 1994. View at Google Scholar · View at Scopus
  196. Y. Li, C. L. Schlamp, and R. W. Nickells, “Experimental induction of retinal ganglion cell death in adult mice,” Investigative Ophthalmology and Visual Science, vol. 40, no. 5, pp. 1004–1008, 1999. View at Google Scholar
  197. S. Takami, Y. Imai, T. Katsuya et al., “Gene polymorphism of the renin-angiotensin system associates with risk for lacunar infarction: the Ohasama study,” American Journal of Hypertension, vol. 13, no. 2, pp. 121–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  198. J. Hata, K. Matsuda, T. Ninomiya et al., “Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction,” Human Molecular Genetics, vol. 16, no. 6, pp. 630–639, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  199. L. H. G. Henskens, A. A. Kroon, M. P. J. Van Boxtel, P. A. M. Hofman, and P. W. De Leeuw, “Associations of the angiotensin II type 1 receptor A1166C and the endothelial NO synthase G894T gene polymorphisms with silent subcortical white matter lesions in essential hypertension,” Stroke, vol. 36, no. 9, pp. 1869–1873, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  200. J. L. Wilkinson-Berka, G. Tan, K. J. Binger et al., “Aliskiren reduces vascular pathology in diabetic retinopathy and oxygen-induced retinopathy in the transgenic (mRen-2)27 rat,” Diabetologia, vol. 54, no. 10, pp. 2724–2735, 2011. View at Publisher · View at Google Scholar · View at PubMed