Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2013, Article ID 918016, 11 pages
http://dx.doi.org/10.1155/2013/918016
Research Article

Prostaglandin E2 Does Not Modulate CCR7 Expression and Functionality after Differentiation of Blood Monocytes into Macrophages

Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1

Received 6 August 2013; Accepted 11 September 2013

Academic Editor: G. Rogler

Copyright © 2013 Marc-André Allaire et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Auffray, D. K. Fogg, E. Narni-Mancinelli et al., “CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 595–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Auffray, M. H. Sieweke, and F. Geissmann, “Blood monocytes: development, heterogeneity, and relationship with dendritic cells,” Annual Review of Immunology, vol. 27, pp. 669–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Liu, G. D. Victora, T. A. Schwickert et al., “In vivo analysis of dendritic cell development and homeostasis,” Science, vol. 324, no. 5925, pp. 392–397, 2009. View at Google Scholar · View at Scopus
  4. R. Förster, A. C. Davalos-Misslitz, and A. Rot, “CCR7 and its ligands: balancing immunity and tolerance,” Nature Reviews Immunology, vol. 8, no. 5, pp. 362–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Förster, A. Schubel, D. Breitfeld et al., “CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs,” Cell, vol. 99, no. 1, pp. 23–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. G. J. Randolph, V. Angeli, and M. A. Swartz, “Dendritic-cell trafficking to lymph nodes through lymphatic vessels,” Nature Reviews Immunology, vol. 5, no. 8, pp. 617–628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. D. Gunn, “Chemokine mediated control of dendritic cell migration and function,” Seminars in Immunology, vol. 15, no. 5, pp. 271–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. D. Gunn, K. Tangemann, C. Tam, J. G. Cyster, S. D. Rosen, and L. T. Williams, “A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 258–263, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Luther, A. Bidgol, D. C. Hargreaves et al., “Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis,” Journal of Immunology, vol. 169, no. 1, pp. 424–433, 2002. View at Google Scholar · View at Scopus
  11. V. N. Ngo, H. L. Tang, and J. G. Cyster, “Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells,” Journal of Experimental Medicine, vol. 188, no. 1, pp. 181–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. J. V. Stein, A. Rot, Y. Luo et al., “The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 61–75, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Warnock, J. J. Campbell, M. E. Dorf, A. Matsuzawa, L. M. McEvoy, and E. C. Butcher, “The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 77–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Gunn, S. Kyuwa, C. Tam et al., “Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization,” Journal of Experimental Medicine, vol. 189, no. 3, pp. 451–460, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Nakano and M. D. Gunn, “Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation,” Journal of Immunology, vol. 166, no. 1, pp. 361–369, 2001. View at Google Scholar · View at Scopus
  16. S. C. Côté, S. Pasvanis, S. Bounou, and N. Dumais, “CCR7-specific migration to CCL19 and CCL21 is induced by PGE2 stimulation in human monocytes: involvement of EP2/EP4 receptors activation,” Molecular Immunology, vol. 46, no. 13, pp. 2682–2693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Scandella, Y. Men, S. Gillessen, R. Förster, and M. Groettrup, “Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells,” Blood, vol. 100, no. 4, pp. 1354–1361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Scandella, Y. Men, D. F. Legler et al., “CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2,” Blood, vol. 103, no. 5, pp. 1595–1601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Luft, M. Jefford, P. Luetjens et al., “Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets,” Blood, vol. 100, no. 4, pp. 1362–1372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Allaire, S. Coté, and N. Dumais, “Involvement of the MAPK and RhoA/ROCK pathways in PGE2-mediated CCR7-dependent monocyte migration,” Immunology Letters, vol. 146, no. 1-2, pp. 70–73, 2012. View at Google Scholar
  21. N. Genois, G. A. Robichaud, and M. J. Tremblay, “Mono Mac 1: a new in vitro model system to study HIV-1 infection in human cells of the mononuclear phagocyte series,” Journal of Leukocyte Biology, vol. 68, no. 6, pp. 854–864, 2000. View at Google Scholar · View at Scopus
  22. H. W. L. Ziegler-Heitbrock, E. Thiel, A. Futterer, V. Herzog, A. Wirtz, and G. Riethmuller, “Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes,” International Journal of Cancer, vol. 41, no. 3, pp. 456–461, 1988. View at Google Scholar · View at Scopus
  23. M. Daigneault, J. A. Preston, H. M. Marriott, M. K. B. Whyte, and D. H. Dockrell, “The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages,” PloS ONE, vol. 5, no. 1, p. e8668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Sokol, G. Hudson, and N. T. James, “Human macrophage development: a morphometric study,” Journal of Anatomy, vol. 151, pp. 27–35, 1987. View at Google Scholar · View at Scopus
  25. K. C. McCullough, S. Basta, S. Knötig et al., “Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection,” Immunology, vol. 98, no. 2, pp. 203–212, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Le Naour, P. Clayette, Y. Henin et al., “Infection of human macrophages with an endogenous tumour necrosis factor-α (TNF-α)-independent human immunodeficiency virus type 1 isolate is unresponsive to the TNF-α synthesis inhibitor RP 55778,” Journal of General Virology, vol. 75, no. 6, pp. 1379–1388, 1994. View at Google Scholar · View at Scopus
  27. H. W. L. Ziegler-Heitbrock and R. J. Ulevitch, “CD14: cell surface receptor and differentiation marker,” Immunology Today, vol. 14, no. 3, pp. 121–125, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. van Furth and Z. A. Cohn, “The origin and kinetics of mononuclear phagocytes,” Journal of Experimental Medicine, vol. 128, no. 3, pp. 415–435, 1968. View at Google Scholar · View at Scopus
  30. R. Van Furth, M. Diesselhoff Den Dulk, and H. Mattie, “Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction,” Journal of Experimental Medicine, vol. 138, no. 6, pp. 1314–1330, 1973. View at Google Scholar · View at Scopus
  31. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. D. F. Robbiani, R. A. Finch, D. Jäger, W. A. Muller, A. C. Sartorelli, and G. J. Randolph, “The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes,” Cell, vol. 103, no. 5, pp. 757–768, 2000. View at Google Scholar · View at Scopus
  33. C. N. Serhan, “Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways,” Annual Review of Immunology, vol. 25, pp. 101–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. J. Bellingan, H. Caldwell, S. E. M. Howie, I. Dransfield, and C. Haslett, “In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes,” Journal of Immunology, vol. 157, no. 6, pp. 2577–2585, 1996. View at Google Scholar · View at Scopus
  35. E. Kolaczkowska, A. Koziol, B. Plytycz, and B. Arnold, “Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis,” Immunobiology, vol. 215, no. 6, pp. 492–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Kunkel, C. H. Kim, N. H. Lazarus et al., “CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells,” Journal of Clinical Investigation, vol. 111, no. 7, pp. 1001–1010, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. P. Bowman, N. A. Kuklin, K. R. Youngman et al., “The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells,” Journal of Experimental Medicine, vol. 195, no. 2, pp. 269–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. E. Hauser, G. F. Debes, S. Arce et al., “Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response,” Journal of Immunology, vol. 169, no. 3, pp. 1277–1282, 2002. View at Google Scholar · View at Scopus
  39. A. E. Hauser, G. Muehlinghaus, R. A. Manz et al., “Long-lived plasma cells in immunity and inflammation,” Annals of the New York Academy of Sciences, vol. 987, pp. 266–269, 2003. View at Google Scholar · View at Scopus
  40. G. Muehlinghaus, L. Cigliano, S. Huehn et al., “Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells,” Blood, vol. 105, no. 10, pp. 3965–3971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Baggiolini, B. Dewald, and B. Moser, “Human chemokines: an update,” Annual Review of Immunology, vol. 15, pp. 675–705, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. K. K. Hyun, M. De La Luz Sierra, C. K. Williams, A. V. Gulino, and G. Tosato, “G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells,” Blood, vol. 108, no. 3, pp. 812–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. B. A. Durafourt, C. S. Moore, D. A. Zammit et al., “Comparison of polarization properties of human adult microglia and blood-derived macrophages,” GLIA, vol. 60, no. 5, pp. 717–727, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. A. J. Williams and B. N. Cronstein, “The effect of A2A adenosine receptor activation on C-C chemokine receptor 7 expression in human THP1 macrophages during inflammation,” Inflammation, vol. 35, no. 2, pp. 614–622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. K. Mburu, J. Wang, M. A. Wood, W. H. Walker, and R. L. Ferris, “CCR7 mediates inflammation-associated tumor progression,” Immunologic Research, vol. 36, no. 1–3, pp. 61–72, 2006. View at Google Scholar · View at Scopus
  46. C. W. Pugh, G. G. MacPherson, and H. W. Steer, “Characterization of nonlymphoid cells derived from rat peripheral lymph,” Journal of Experimental Medicine, vol. 157, no. 6, pp. 1758–1779, 1983. View at Google Scholar · View at Scopus
  47. G. J. Randolph, K. Inaba, D. F. Robbiani, R. M. Steinman, and W. A. Muller, “Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo,” Immunity, vol. 11, no. 6, pp. 753–761, 1999. View at Google Scholar · View at Scopus
  48. C. C. Norbury, D. Malide, J. S. Gibbs, J. R. Bennink, and J. W. Yewdell, “Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo,” Nature Immunology, vol. 3, no. 3, pp. 265–271, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Cao, D. A. Lawrence, D. K. Strickland, and L. Zhang, “Aspecific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics,” Blood, vol. 106, no. 9, pp. 3234–3241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. G. J. Randolph, “Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis,” Current Opinion in Lipidology, vol. 19, no. 5, pp. 462–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Tacke, D. Alvarez, T. J. Kaplan et al., “Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 185–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Angeli, J. Llodrá, J. X. Rong et al., “Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization,” Immunity, vol. 21, no. 4, pp. 561–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Llodrá, V. Angeli, J. Liu, E. Trogan, E. A. Fisher, and G. J. Rendolph, “Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11779–11784, 2004. View at Publisher · View at Google Scholar · View at Scopus