International Journal of Microbiology
 Journal metrics
Acceptance rate16%
Submission to final decision84 days
Acceptance to publication34 days
CiteScore2.270
Impact Factor-
 Submit

Prevalence, Risk Factors, and Antimicrobial Resistance Profiles of Thermophilic Campylobacter Species in Humans and Animals in Sub-Saharan Africa: A Systematic Review

Read the full article

 Journal profile

International Journal of Microbiology publishes papers on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa.

 Editor spotlight

Chief Editor, Professor Urakawa, is currently based at Florida Gulf Coast University as Professor of Marine and Ecological Sciences and has a background in Environmental Microbiology and Microbial Ecology.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Comparison of Bacterial Community Structure and Diversity in Traditional Gold Mining Waste Disposal Site and Rice Field by Using a Metabarcoding Approach

Traditional small-scale gold mining mostly use mercury to extract the gold from ores. However, mercury contamination in the environment can affect the composition and structure of the bacterial community. The purpose of this study was to determine the effect of mercury contamination on the bacterial community in the traditional gold mining waste disposal site and in the rice field. Mercury analysis was carried out using the CVAFS method. Analysis of bacterial communities and structure was carried out based on the results of metabarcoding of the V3-V4 16S rRNA regions obtained from paired-end Illumina MiSeq reads. The results showed that the sample from the mining waste disposal site had a mercury level of 230 mg/kg, while the sample from the rice field had 3.98 mg/kg. The results showed that there were differences in microbial composition and community structure in both locations. With the total reads of 57,031, the most dominant phylum was Firmicutes in the mining disposal site sample. Meanwhile, with the total reads of 33,080, the sample from rice field was dominated by Planctomycetes. The abundant classes of bacteria in the mining waste disposal site, from the highest were Bacilli, Gammaproteobacteria and Planctomycetia, while the sample from the rice field was dominated by the Planctomycetia and Acidobacteria subdivision 6. The families that dominated the sample in disposal site were Bacillaceae and Aeromonadaceae, while the sample from the rice field was dominated by Gemmataceae. The abundant genera in both locations were Bacillus and Gemmata. This study concluded that the high level of mercury in the soil reduced the richness and diversity of bacterial phyla and lower taxa. There was also a shift in the dominance of phyla and lower taxa in both locations. This study provides an understanding of the microbial community structure in the area that is highly contaminated with mercury to open insight into the potential of these bacteria for mercury bioremediation.

Review Article

Aflatoxins in Uganda: An Encyclopedic Review of the Etiology, Epidemiology, Detection, Quantification, Exposure Assessment, Reduction, and Control

Uganda is an agrarian country where farming employs more than 60% of the population. Aflatoxins remain a scourge in the country, unprecedentedly reducing the nutritional and economic value of agricultural foods. This review was sought to synthetize the country’s major findings in relation to the mycotoxins’ etiology, epidemiology, detection, quantification, exposure assessment, control, and reduction in different matrices. Electronic results indicate that aflatoxins in Uganda are produced by Aspergillus flavus and A. parasiticus and have been reported in maize, sorghum, sesame, beans, sunflower, millet, peanuts, and cassava. The causes and proliferation of aflatoxigenic contamination of Ugandan foods have been largely due to poor pre-, peri-, and postharvest activities, poor government legislation, lack of awareness, and low levels of education among farmers, entrepreneurs, and consumers on this plague. Little diet diversity has exacerbated the risk of exposure to aflatoxins in Uganda because most of the staple foods are aflatoxin-prone. On the detection and control, these are still marginal, though some devoted scholars have devised and validated a sensitive portable device for on-site aflatoxin detection in maize and shown that starter cultures used for making some cereal-based beverages have the potential to bind aflatoxins. More efforts should be geared towards awareness creation and vaccination against hepatitis B and hepatitis A to reduce the risk of development of liver cancer among the populace.

Research Article

A Comparative Study on Phenotypic versus ITS-Based Molecular Identification of Dermatophytes Isolated in Dakar, Senegal

Classically, dermatophytes are identified by phenotypic methods even if these methods, sometimes, remain difficult or uncertain. On the other hand, nucleotide sequence analysis of internal transcribed spacers (ITS) of rDNA has proved to be a useful method for identification of dermatophytes. The objective of this study was to compare the phenotypic method with DNA sequencing of the ITS regions for identification of dermatophyte species isolated in Dakar, Senegal. A collection of thirty-two strains of dermatophytes were isolated from patients suffering from dermatophytosis. Mycological identification revealed Trichophyton soudanense (n = 13), T. interdigitale (n = 10), Microsporum audouinii (n = 5), and one strain for each of the following species: T. rubrum, T. mentagrophytes, and M. canis and one unidentified strain. For comparison, ITS-based PCR and DNA sequencing were applied for identification of the isolated dermatophytes. ITS sequences showed, in BLAST search analysis, 99-100% of similarity. Identification of dermatophyte isolates by conventional methods was confirmed by DNA sequencing of the ITS regions in 84% of cases. Discrepancies concern mostly T. rubrum misidentified as T. interdigitale. PCR sequencing provided an excellent tool for identifying dermatophyte strains that do not present typical morphological characteristics. It was also able to give correct identification of an atypical strain of M. audouinii responsible of mycetoma of the scalp.

Research Article

Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum-Millet Beverage

Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)5 rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods.

Research Article

Coexistence of β-Lactamases in Community-Acquired Infections in a Tertiary Care Hospital in India

Introduction. The trends of β-lactamases producing Enterobacteriaceae is ever increasing, and limited studies have reported investigating coexistence of β lactamases in Enterobacteriaceae. A cross-sectional study after approval from the Institutional Ethical committee was conducted between June 2014 and May 2016 in community-acquired infections due to multidrug-resistant organisms in our tertiary care. Nonrepetitive clinical samples from the out-patient department (OPD) were processed for bacteriological culture and identification of Enterobacteriaceae. An antibiotic susceptibility test, screening, and phenotypic confirmation for ESBLs and carbapenemases and AmpC producers were performed to check for coexistence of these enzymes. Results. Nonrepetitive clinical specimens processed for culture and identification in our hospital revealed 417 positive isolates in community acquired infections which were multidrug-resistant organisms, and on screening for β-lactamases, 293 isolates were positive for one of the three beta lactamases, ESBL, AmpC, or carbapnemases. Coproduction of ESBL and MBL was seen in 5 isolates, 35 isolates showed coproduction of ESBL and AmpC enzymes, and AmpC and MBL coproduction was exhibited in only in 5 isolates. Conclusions. Coexistence of ESBLs, AmpC producers, and carbapenemases has been described. Continuous monitoring and surveillance and proper infection control and prevention practices will limit the further spread of these superbugs within the hospital and beyond.

Research Article

Contamination of the Surfaces of a Health Care Environment by Multidrug-Resistant (MDR) Bacteria

Nosocomial infections (NIs) are known worldwide and remain a major problem despite scientific and technical advances in the field of health. The severity of the infection depends on the characteristics of the microorganisms involved and the high frequency of resistant pathogens in the hospital environment. The aim of this study is to determine the distribution of pathogenic bacteria (and their resistance to antibiotics) that spread on hospital surfaces, more specifically, on those of various departments in the Provincial Hospital Center (PHC) of Mohammedia, Morocco. A cross-sectional study was conducted from March 2017 to April 2018. Samples were collected by swabbing the hospital surfaces, and the isolated bacteria were checked for their susceptibility to antibiotics by the Kirby–Bauer disk diffusion method following the standards of the Clinical and Laboratory Standards Institute (CLSI). Among 200 swab samples, 176 (88%) showed bacterial growth. Gram-negative isolates were predominant at 51.5% (101/196), while the Gram-positives were at 48.5% (95/196). The main isolates are Enterobacteria weighted at 31.6% (62/196), Staphylococcus aureus reaching 24% (47/196), Pseudomonas aeruginosa at 9.2% (18/196), and Acinetobacter spp. with 3.3% (6/196). Moreover, the antimicrobial susceptibility profile of the isolates showed that about 31.7% (32/101) of the Gram-negative isolates were found to be MDR. This resistance is also high among isolates of S. aureus of which 44.7% (20/47) were methicillin-resistant Staphylococcus aureus (MRSA). Contamination of hospital surfaces by MDR bacteria is a real danger to public health. The concept of environmental bacterial reservoir is a reality that requires strict compliance with current guidelines and recommendations for hand hygiene, cleaning, and disinfection of surfaces in hospitals.

International Journal of Microbiology
 Journal metrics
Acceptance rate16%
Submission to final decision84 days
Acceptance to publication34 days
CiteScore2.270
Impact Factor-
 Submit