Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011, Article ID 107023, 9 pages
http://dx.doi.org/10.1155/2011/107023
Research Article

Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon

Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Building 105, Maywood, IL 60153, USA

Received 16 March 2011; Revised 27 April 2011; Accepted 7 May 2011

Academic Editor: Haichun Gao

Copyright © 2011 Sylvia A. Reimann and Alan J. Wolfe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Reimann and A. J. Wolfe, “A critical process controlled by MalT and OmpR is revealed through synthetic lethality,” Journal of Bacteriology, vol. 191, no. 16, pp. 5320–5324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Igo, J. M. Slauch, and T. J. Silhavy, “Signal transduction in bacteria: kinases that control gene expression,” New Biologist, vol. 2, no. 1, pp. 5–9, 1990. View at Google Scholar · View at Scopus
  3. T. Mizuno, A. Shinkai, K. Matsui, and S. Mizushima, “Osmoregulatory expression of porin genes in Escherichia coli: a comparative study on strains B and K-12,” FEMS Microbiology Letters, vol. 68, no. 3, pp. 289–293, 1990. View at Google Scholar · View at Scopus
  4. T. Oshima, H. Aiba, Y. Masuda et al., “Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12,” Molecular Microbiology, vol. 46, no. 1, pp. 281–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Pruss, C. A. Besemann, A. M. Denton, and A. J. Wolfe, “A complex transcription network controls the early stages of biofilm development by Escherichia coli,” Journal of Bacteriology, vol. 188, no. 11, pp. 3731–3739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Boos and A. Bohm, “Learning new tricks from an old dog: MalT of the Escherichia coli maltose system is part of a complex regulatory network,” Trends in Genetics, vol. 16, no. 9, pp. 404–409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Boos and H. A. Shuman, “Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation,” Microbiology and Molecular Biology Reviews, vol. 62, no. 1, pp. 204–229, 1998. View at Google Scholar · View at Scopus
  8. M. Ehrmann, R. Ehrle, E. Hofmann, W. Boos, and A. Schlosser, “The ABC maltose transporter,” Molecular Microbiology, vol. 29, no. 3, pp. 685–694, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Peist, A. Koch, P. Bolek, S. Sewitz, T. Kolbus, and W. Boos, “Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity,” Journal of Bacteriology, vol. 179, no. 24, pp. 7679–7686, 1997. View at Google Scholar · View at Scopus
  10. N. Joly, A. Bohm, W. Boos, and E. Richet, “MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33123–33130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Schlegel, O. Danot, E. Richet, T. Ferenci, and W. Boos, “The N terminus of the Escherichia coli transcription activator MalT is the domain of interaction with MalY,” Journal of Bacteriology, vol. 184, no. 11, pp. 3069–3077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Lengsfeld, S. Schonert, R. Dippel, and W. Boos, “Glucose- and glucokinase-controlled mal gene expression in Escherichia coli,” Journal of Bacteriology, vol. 191, no. 3, pp. 701–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Johansson, B. Dagberg, E. Richet, and B. E. Uhlin, “H-NS and StpA proteins stimulate expression of the maltose regulon in Escherichia coli,” Journal of Bacteriology, vol. 180, no. 23, pp. 6117–6125, 1998. View at Google Scholar · View at Scopus
  14. H. S. Park, Y. Ostberg, J. Johansson, E. G. H. Wagner, and B. E. Uhlin, “Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites,” Genes and Development, vol. 24, no. 13, pp. 1345–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Chapon, “Role of the catabolite activator protein in the expression of the maltose regulon of Escherichia coli,” Annales de Microbiologie, vol. 133, no. 1, pp. 77–80, 1982. View at Google Scholar · View at Scopus
  16. C. Chapon and A. Kolb, “Action of CAP on the malT promoter in vitro,” Journal of Bacteriology, vol. 156, no. 3, pp. 1135–1143, 1983. View at Google Scholar · View at Scopus
  17. K. Decker, J. Plumbridge, and W. Boos, “Negative transcriptional regulation of a positive regulator: the expression of MalT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc,” Molecular Microbiology, vol. 27, no. 2, pp. 381–390, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Reimann and A. J. Wolfe, “Constitutive expression of the maltoporin LamB in the absence of OmpR damages the cell envelope,” Journal of Bacteriology, vol. 193, no. 4, pp. 842–853, 2011. View at Publisher · View at Google Scholar
  19. E. Richet, D. Vidal-Ingigliardi, and O. Raibaud, “A new mechanism for coactivation of transcription initiation: repositioning of an activator triggered by the binding of a second activator,” Cell, vol. 66, no. 6, pp. 1185–1195, 1991. View at Google Scholar · View at Scopus
  20. S. Kumari, C. M. Beatty, D. Browning et al., “Regulation of acetyl coenzyme A synthetase in Escherichia coli,” Journal of Bacteriology, vol. 182, no. 15, pp. 4173–4179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. T. J. Silhavy, M. L. Berman, and L. W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1984.
  22. M. Baba, T. Ara, M. Hasegawa et al., “Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection,” Molecular Systems Biology, vol. 2, article 2006.0008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Beatty, D. Browning, S. J. W. Busby, and A. J. Wolfe, “Cyclic AMP receptor protein-dependent activation of the Escherichia coliacsP2 promoter by a synergistic class III mechanism,” Journal of Bacteriology, vol. 185, no. 17, pp. 5148–5157, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Datsenko and B. L. Wanner, “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6640–6645, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Morona and P. R. Reeves, “The tolC locus of Escherichia coli affects the expression of three major outer membrane proteins,” Journal of Bacteriology, vol. 150, no. 3, pp. 1016–1023, 1982. View at Google Scholar · View at Scopus
  26. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning—A Laboratroy Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989.
  27. B. Dardonville and O. Raibaud, “Characterization of malT mutants that constitutively activate the maltose regulon of Escherichia coli,” Journal of Bacteriology, vol. 172, no. 4, pp. 1846–1852, 1990. View at Google Scholar · View at Scopus
  28. O. Raibaud and E. Richet, “Maltotriose is the inducer of the maltose regulon of Escherichia coli,” Journal of Bacteriology, vol. 169, no. 7, pp. 3059–3061, 1987. View at Google Scholar · View at Scopus
  29. M. Schwartz, “The maltose regulon,” in Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, F. C. Neidhardt and J. L. Ingraham, Eds., American Society for Microbiology, Washington, DC, USA, 1987. View at Google Scholar
  30. E. Richet, “On the role of the multiple regulatory elements involved in the activation of the Escherichia colimalEp promoter,” Journal of Molecular Biology, vol. 264, no. 5, pp. 852–862, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. F. C. Grenier, E. B. Waygood, and M. H. Saier Jr., “The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems,” Journal of Cellular Biochemistry, vol. 31, no. 2, pp. 97–105, 1986. View at Google Scholar · View at Scopus
  32. A. Hartmann and W. Boos, “Mutations in phoB, the positive gene activator of the pho regulon in Escherichia coli, affect the carbohydrate phenotype on MacConkey indicator plates,” Research in Microbiology, vol. 144, no. 4, pp. 285–293, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Decker, R. Peist, J. Reidl, M. Kossmann, B. C. Brand, and W. Boos, “Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system,” Journal of Bacteriology, vol. 175, no. 17, pp. 5655–5665, 1993. View at Google Scholar · View at Scopus
  34. R. Dippel, T. Bergmiller, A. Bohm, and W. Boos, “The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation,” Journal of Bacteriology, vol. 187, no. 24, pp. 8332–8339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Schlegel, A. Bohm, S. J. Lee, R. Peist, K. Decker, and W. Boos, “Network regulation of the Escherichia coli maltose system,” Journal of Molecular Microbiology and Biotechnology, vol. 4, no. 3, pp. 301–307, 2002. View at Google Scholar · View at Scopus
  36. O. Raibaud, D. Vidal-Ingigliardi, and E. Richet, “A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters,” Journal of Molecular Biology, vol. 205, no. 3, pp. 471–485, 1989. View at Google Scholar · View at Scopus
  37. V. Schreiber and E. Richet, “Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP,” Journal of Biological Chemistry, vol. 274, no. 47, pp. 33220–33226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J. W. Lengeler and E. Lin, “Reversal of the mannitol-sorbitol diauxie in Escherichia coli,” Journal of Bacteriology, vol. 112, no. 2, pp. 840–848, 1972. View at Google Scholar · View at Scopus
  39. M. Reyes and H. A. Shuman, “Overproduction of MalK protein prevents expression of the Escherichia coli mal regulon,” Journal of Bacteriology, vol. 170, no. 10, pp. 4598–4602, 1988. View at Google Scholar · View at Scopus
  40. S. Thao, C.-S. Chen, H. Zhu, and J. C. Escalante-Semerena, “Nepsilon-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity,” PLoS One, vol. 5, no. 12, article, 2010. View at Publisher · View at Google Scholar
  41. B. J. Yu, J. A. Kim, J. H. Moon, S. E. Ryu, and J. G. Pan, “The diversity of lysine-acetylated proteins in Escherichia coli,” Journal of Microbiology and Biotechnology, vol. 18, no. 9, pp. 1529–1536, 2008. View at Google Scholar · View at Scopus
  42. J. Zhang, R. W. Sprung, J. Pei et al., “Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli,” Molecular and Cellular Proteomics, vol. 8, no. 2, pp. 215–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. V. J. Starai, I. Celic, R. N. Cole, J. D. Boeke, and J. C. Escalante-Semerena, “Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine,” Science, vol. 298, no. 5602, pp. 2390–2392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Berman, L. Enquist, and T. J. Silhavy, Advanced Bacterial Genetics, Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, USA, 1981.