Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011, Article ID 127870, 16 pages
http://dx.doi.org/10.1155/2011/127870
Review Article

The S-Layer Glycome—Adding to the Sugar Coat of Bacteria

1Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
2Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
3Institute of Genetics, General Genetics, Dresden University of Technology, Zellescher Weg 20b, 01217 Dresden, Germany

Received 15 March 2010; Accepted 29 June 2010

Academic Editor: Charlene Kahler

Copyright © 2011 Robin Ristl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.