Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2011, Article ID 312956, 10 pages
http://dx.doi.org/10.1155/2011/312956
Review Article

Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

Department of Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark

Received 16 June 2010; Revised 21 November 2010; Accepted 9 December 2010

Academic Editor: Jorge H. Leitao

Copyright © 2011 Susanne Schjørring and Karen A. Krogfelt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bud, “Antibiotics: the epitome of a wonder drug,” BMJ, vol. 334, p. s6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Andersson, A. C. Terwisscha van Scheltinga, and K. Valegård, “Towards new β-lactam antibiotics,” Cellular and Molecular Life Sciences, vol. 58, no. 12-13, pp. 1897–1906, 2001. View at Google Scholar · View at Scopus
  3. J. J. Ross, M. G. Worthington, S. L. Gorbach et al., “Resistance to levofloxacin and failure of treatment of Pneumococcal pneumonia,” New England Journal of Medicine, vol. 347, no. 1, pp. 65–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Song, E. S. Moland, N. D. Hanson, J. S. Lewis, J. H. Jorgensen, and K. S. Thomson, “Failure of cefepime therapy in treatment of Klebsiella pneumoniae bacteremia,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4891–4894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Talon, M. C. Woronoff-Lemsi, S. Limat et al., “The impact of resistance to methicillin in Staphylococcus aureus bacteremia on mortality,” European Journal of Internal Medicine, vol. 13, no. 1, pp. 31–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. F. M. Aarestrup and B. Carstensen, “Effect of tylosin used as a growth promoter on the occurrence of macrolide-resistant enterococci and staphylococci in pigs,” Microbial Drug Resistance, vol. 4, no. 4, pp. 307–312, 1998. View at Google Scholar · View at Scopus
  7. Anonymous, “DANMAP—Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark,” 2007.
  8. K. Grave, V. F. Jensen, K. Odensvik, M. Wierup, and M. Bangen, “Usage of veterinary therapeutic antimicrobials in Denmark, Norway and Sweden following termination of antimicrobial growth promoter use,” Preventive Veterinary Medicine, vol. 75, no. 1-2, pp. 123–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Anomymous, “European Commission, Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance Question N EFSA-Q-2004-079,” The EFSA Journal, vol. 223, pp. 1–12, 2005. View at Google Scholar
  10. C. A.M. McNulty and N. A. Francis, “Optimizing antibiotic prescribing in primary care settings in the UK: findings of a BSAC multi-disciplinary worksho,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 11, pp. 2278–2284, 2010. View at Publisher · View at Google Scholar
  11. L. Grigoryan, F. M. Haaijer-Ruskamp, J. G. M. Burgerhof et al., “Self-medication with antimicrobial drugs in Europe,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 452–459, 2006. View at Google Scholar · View at Scopus
  12. H. Goossens, M. Ferech, R. Vander Stichele, and M. Elseviers, “Outpatient antibiotic use in Europe and association with resistance: a cross-national database study,” The Lancet, vol. 365, no. 9459, pp. 579–587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Goossens, D. Guillemot, M. Ferech et al., “National campaigns to improve antibiotic use,” European Journal of Clinical Pharmacology, vol. 62, no. 5, pp. 373–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” International Journal of Antimicrobial Agents, vol. 35, no. 4, pp. 322–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. D. Xu, G. A. McFeters, and P. S. Stewart, “Biofilm resistance to antimicrobial agents,” Microbiology, vol. 146, no. 3, pp. 547–549, 2000. View at Google Scholar · View at Scopus
  16. B. B. Christensen, C. Sternberg, J. B. Andersen et al., “Establishment of new genetic traits in a microbial biofilm community,” Applied and Environmental Microbiology, vol. 64, no. 6, pp. 2247–2255, 1998. View at Google Scholar · View at Scopus
  17. S. J. Sørensen, M. Bailey, L. H. Hansen, N. Kroer, and S. Wuertz, “Studying plasmid horizontal transfer in situ: a critical review,” Nature Reviews Microbiology, vol. 3, no. 9, pp. 700–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Molin and T. Tolker-Nielsen, “Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure,” Current Opinion in Biotechnology, vol. 14, no. 3, pp. 255–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Aragon, M. L. Sole, and S. Brown, “Outcomes of an infection prevention project focusing on hand hygiene and isolation practices,” AACN Clinical Issues, vol. 16, no. 2, pp. 121–132, 2005. View at Google Scholar · View at Scopus
  20. N. Frimodt-Møller and B. Gahrn-Hansen, “Antibiotics in a hospital hygienic perspective,” Ugeskrift for Laeger, vol. 169, no. 49, pp. 4254–4256, 2007. View at Google Scholar
  21. G. L. Simon and S. L. Gorbach, “Intestinal flora in health and disease,” Gastroenterology, vol. 86, no. 1, pp. 174–193, 1984. View at Google Scholar · View at Scopus
  22. S. P. Borriello, “Microbial flora of the gastrointestinal tract,” in Microbial metabolism in the digestive tract, M. J. Hill, Ed., pp. 2–16, CRC Press, Boca Raton, Fla, USA, 1986. View at Google Scholar
  23. E. Isolauri, S. Salminen, and A. C. Ouwehand, “Microbial-gut interactions in health and disease,” Probiotics Best Practice & Research Clinical Gastroenterology, vol. 18, no. 2, pp. 299–313, 2008. View at Google Scholar
  24. E. G. Zoetendal, C. T. Collier, S. Koike, R. I. Mackie, and H. R. Gaskins, “Molecular ecological analysis of the gastrointestinal microbiota: a review,” Journal of Nutrition, vol. 134, no. 2, pp. 465–472, 2004. View at Google Scholar · View at Scopus
  25. R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995. View at Google Scholar · View at Scopus
  26. J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. View at Google Scholar · View at Scopus
  27. E. Grasselli, P. François, M. Gutacker et al., “Evidence of horizontal gene transfer between human and animal commensal Escherichia coli strains identified by microarray,” FEMS Immunology and Medical Microbiology, vol. 53, no. 3, pp. 351–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Salyers, A. Gupta, and Y. Wang, “Human intestinal bacteria as reservoirs for antibiotic resistance genes,” Trends in Microbiology, vol. 12, no. 9, pp. 412–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Courvalin, “Predictable and unpredictable evolution of antibiotic resistance,” Journal of Internal Medicine, vol. 264, no. 1, pp. 4–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Mazodier and J. Davies, “Gene transfer between distantly related bacteria,” Annual Review of Genetics, vol. 25, pp. 147–171, 1991. View at Google Scholar · View at Scopus
  31. F. M. Aarestrup, H. Kruse, E. Tast, A. M. Hammerum, and L. B. Jensen, “Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway,” Microbial Drug Resistance, vol. 6, no. 1, pp. 63–70, 2000. View at Google Scholar · View at Scopus
  32. D. I. Andersson and B. R. Levin, “The biological cost of antibiotic resistance,” Current Opinion in Microbiology, vol. 2, no. 5, pp. 489–493, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. D. I. Andersson and D. Hughes, “Antibiotic resistance and its cost: is it possible to reverse resistance?” Nature Reviews Microbiology, vol. 8, no. 4, pp. 260–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Björkman, D. Hughes, and D. I. Andersson, “Virulence of antibiotic-resistant Salmonella typhimurium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3949–3953, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. L. L. Marcusson, N. Frimodt-Møller, and D. Hughes, “Interplay in the selection of fluoroquinolone resistance and bacterial fitness,” PLoS Pathogens, vol. 5, no. 8, Article ID e1000541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Fermér and G. Swedberg, “Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli,” Journal of Bacteriology, vol. 179, no. 3, pp. 831–837, 1997. View at Google Scholar · View at Scopus
  37. J. Björkman, I. Nagaev, O. G. Berg, D. Hughes, and D. I. Andersson, “Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance,” Science, vol. 287, no. 5457, pp. 1479–1482, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Nagaev, J. Björkman, D. I. Andersson, and D. Hughes, “Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus,” Molecular Microbiology, vol. 40, no. 2, pp. 433–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. B. R. Levin, V. Perrot, and N. Walker, “Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria,” Genetics, vol. 154, no. 3, pp. 985–997, 2000. View at Google Scholar · View at Scopus
  40. F. Guarner and J. R. Malagelada, “Gut flora in health and disease,” The Lancet, vol. 361, no. 9356, pp. 512–519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. Å. Sullivan, “Effect of antimicrobial agents on the ecological balance of human microflora,” Lancet Infectious Diseases, vol. 1, no. 2, pp. 101–114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. C. E. Nord, A. Heimdahl, and L. Kager, “Antimicrobial agents and the human oropharyngeal and intestinal microflora,” Annali dell'Istituto Superiore di Sanita, vol. 22, no. 3, pp. 883–892, 1986. View at Google Scholar · View at Scopus
  43. A. Apisarnthanarak and L. M. Mundy, “Death due to community-associated Clostridium difficile in a woman receiving prolonged antibiotic therapy for suspected lyme disease,” Clinical Infectious Diseases, vol. 51, no. 3, pp. 369–370, 2010. View at Google Scholar
  44. S. M. Wren, N. Ahmed, A. Jamal et al., “Preoperative oral antibiotics in colorectal surgery increase the rate of Clostridium difficile colitis,” Archives of Surgery, vol. 140, no. 8, pp. 752–756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. G. R. Gibson and R. Fuller, “Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use,” Journal of Nutrition, vol. 130, no. 2, 2000. View at Google Scholar · View at Scopus
  46. N. Toomey, A. Monaghan, S. Fanning, and D. Bolton, “Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments,” Applied and Environmental Microbiology, vol. 75, no. 10, pp. 3146–3152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. C. Schackelford and M. R. Elwell, “Small and large intestine, and mesentery,” in Pathology of the Mouse, R. R. Maronpot, Ed., pp. 81–118, Cache River Press, St. Louis, Mo, USA, 1999. View at Google Scholar
  48. R. Ducluzeau, “Microbial Interactions in the digestive tract,” in The Germ-Free Animal in Biomedical Research, M. Coates and B. E. Gustafsson, Eds., vol. 9, pp. 141–154, Laboratory Animal, 1984. View at Google Scholar
  49. M. Pollard and N. Sharon, “Responses of the Peyer's patches in germ-free mice to antigenic stimulation,” Infection and Immunity, vol. 2, no. 1, pp. 96–100, 1970. View at Google Scholar
  50. R. Freter, “Mechanisms that control the microflora in the large intestine,” in Human Intestinal Microflora in Health and Disease, D. J. Hentges, Ed., pp. 33–54, 1983. View at Google Scholar
  51. D. J. Hentges, A. J. Stein, S. W. Casey, and J. U. Que, “Protective role of intestinal flora against infection with Pseudomonas aeruginosa in mice: influence of antibiotics on colonization resistance,” Infection and Immunity, vol. 47, no. 1, pp. 118–122, 1985. View at Google Scholar · View at Scopus
  52. D. J. Hentges, “The Influence of streptomycon on colonization resistance in mice,” Microecology and Therapy, vol. 14, pp. 53–62, 1984. View at Google Scholar
  53. L. K. Poulsen, T. R. Licht, C. Rang, K. A. Krogfelt, and S. Molin, “Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice,” Journal of Bacteriology, vol. 177, no. 20, pp. 5840–5845, 1995. View at Google Scholar · View at Scopus
  54. J. U. Que and D. J. Hentges, “Effect of streptomycin administration on colonization resistance to Salmonella typhimurium in mice,” Infection and Immunity, vol. 48, no. 1, pp. 169–174, 1985. View at Google Scholar · View at Scopus
  55. K. Hirayama, “Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria,” Experimental Animals, vol. 48, no. 4, pp. 219–227, 1999. View at Google Scholar · View at Scopus
  56. R. Kibe, M. Sakamoto, H. Yokota et al., “Movement and fixation of intestinal microbiota after administration of human feces to germfree mice,” Applied and Environmental Microbiology, vol. 71, no. 6, pp. 3171–3178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. W. Tannock, “Microbiota of mucosal surfaces in the gut of monogastric animals,” in Colonization of Mucosal Surfaces, J. P. Nataro, P. S. Cohen, H. L. T. Mobley, and J. N. Weiser, Eds., pp. 163–178, ASM Press, Washington, DC, USA, 2005. View at Google Scholar
  59. H. A. Gordon and L. Pesti, “The gnotobiotic animal as a tool in the study of host microbial relationships,” Bacteriological Reviews, vol. 35, no. 4, pp. 390–429, 1971. View at Google Scholar · View at Scopus
  60. Anomymous and FAO/WHO Consultations and workshops, “Safety assessment of foods derived from genetically modified microorganisms,” Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, pp.1–29, 2001.
  61. R. J. Boyle, R. M. Robins-Browne, and M. L. K. Tang, “Probiotic use in clinical practice: what are the risks?” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1256–1264, 2006. View at Google Scholar · View at Scopus
  62. L. Feld, S. Schjørring, K. Hammer et al., “Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 4, pp. 845–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Gevers, G. Huys, and J. Swings, “in vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria,” FEMS Microbiology Letters, vol. 225, no. 1, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Jacobsen, A. Wilcks, K. Hammer, G. Huys, D. Gevers, and S. R. Andersen, “Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats,” FEMS Microbiology Ecology, vol. 59, no. 1, pp. 158–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Sasaki, N. Taketomo, and T. Sasaki, “Factors affecting transfer frequency of pAMβ1 from Streptococcus faecalis to Lactobacillus plantarum,” Journal of Bacteriology, vol. 170, no. 12, pp. 5939–5942, 1988. View at Google Scholar · View at Scopus
  66. J. Schlundt, P. Saadbye, B. Lohmann, B. L. Jacobsen, and E. M. Nielsen, “Conjugal transfer of plasmid DNA between Lactococcus lactis strains and distribution of transconjugants in the digestive tract of gnotobiotic rats,” Microbial Ecology in Health and Disease, vol. 7, no. 2, pp. 59–69, 1994. View at Google Scholar · View at Scopus
  67. M. Gruzza, M. Fons, M. F. Ouriet, Y. Duval-Iflah, and R. Ducluzeau, “Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora,” Microbial Releases, vol. 2, no. 4, pp. 183–189, 1994. View at Google Scholar · View at Scopus
  68. G. W. Tannock, “Conjugal transfer of plasmid pAM beta 1 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis,” Applied and Environmental Microbiology, vol. 53, no. 11, pp. 2693–2695, 1987. View at Google Scholar · View at Scopus
  69. P. S. Cocconcelli, L. Morelli, and M. Vescovo, “Conjugal transfer of antibiotic resistances from Lactobacillus to Streptococcus lactis,” Microbiologie Aliments Nutrition, vol. 3, no. 2, pp. 163–165, 1985. View at Google Scholar · View at Scopus
  70. M. J. Gasson and F. L. Davies, “Conjugal transfer of the drug resistance plasmid pAMβ in the lactic streptococci,” FEMS Microbiology Letters, vol. 7, no. 1, pp. 51–53, 1980. View at Google Scholar · View at Scopus
  71. A. W. Shrago, B. M. Chassy, and W. J. Dobrogosz, “Conjugal plasmid transfer (pAMβ1) in Lactobacillus plantarum,” Applied and Environmental Microbiology, vol. 52, no. 3, pp. 574–576, 1986. View at Google Scholar · View at Scopus
  72. C. A. West and P. J. Warner, “Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum,” Applied and Environmental Microbiology, vol. 50, no. 5, pp. 1319–1321, 1985. View at Google Scholar · View at Scopus
  73. L. Morelli, P. G. Sarra, and V. Bottazzi, “in vivo transfer of pAMβ1 from Lactobacillus reuteri to Enterococcus faecalis,” Journal of Applied Bacteriology, vol. 65, no. 5, pp. 371–375, 1988. View at Google Scholar · View at Scopus
  74. J. M. Korhonen, Y. Sclivagnotis, and A. V. Wright, “Characterization of dominant cultivable lactobacilli and their antibiotic resistance profiles from faecal samples of weaning piglets,” Journal of Applied Microbiology, vol. 103, no. 6, pp. 2496–2503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Schjørring, C. Struve, and K. A. Krogfelt, “Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 5, pp. 1086–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Tuohy, M. Davies, P. Rumsby, C. Rumney, M. R. Adams, and I. R. Rowland, “Monitoring transfer of recombinant and nonrecombinant plasmids between Lactococcus lactis strains and members of the human gastrointestinal microbiota in vivo—Impact of donor cell number and diet,” Journal of Applied Microbiology, vol. 93, no. 6, pp. 954–964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. G. C. Burton, D. C. Hirsh, D. C. Blenden, and J. L. Zeigler, “The effects of tetracycline on the establishment of Escherichia coli of animal origin, and in vivo transfer of antibiotic resistance, in the intestinal tract of man,” Society for Applied Bacteriology symposium series, vol. 3, no. 0, pp. 241–253, 1974. View at Google Scholar · View at Scopus
  78. C. H. Lester, N. Frimodt-Møller, T. L. Sørensen, D. L. Monnet, and A. M. Hammerum, “in vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 2, pp. 596–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Balis, A. C. Vatopoulos, M. Kanelopoulou et al., “Indications of in vivo transfer of an epidemic R plasmid from Salmonella enteritidis to Escherichia coli of the normal human gut flora,” Journal of Clinical Microbiology, vol. 34, no. 4, pp. 977–979, 1996. View at Google Scholar · View at Scopus
  80. L. H. Su, C. H. Chiu, C. Chu, M. H. Wang, JU. H. Chia, and T. L. Wu, “in vivo acquisition of ceftriaxone resistance in Salmonella enterica serotype anatum,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 2, pp. 563–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. L. M. Cavaco, E. Abatih, F. M. Aarestrup, and L. Guardabassi, “Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 10, pp. 3612–3616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Bidet, B. Burghoffer, V. Gautier et al., “in vivo transfer of plasmid-encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability to imipenem in K. pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 8, pp. 3562–3565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Witte, “Ecological impact of antibiotic use in animals on different complex microflora: environment,” International Journal of Antimicrobial Agents, vol. 14, no. 4, pp. 321–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. Anonymous, Annual Report on Zoonoses in Denmark 2006, Technical University of Denmark, 2006.
  85. S. Ethelberg, G. Sørensen, B. Kristensen et al., “Outbreak with multi-resistant Salmonella Typhimurium DT104 linked to carpaccio, Denmark, 2005,” Epidemiology and Infection, vol. 135, no. 6, pp. 900–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. H. C. Lewis, M. Kirk, S. Ethelberg et al., “Outbreaks of shigellosis in Denmark and Australia associated with imported baby corn, August 2007—final summary,” Euro Surveillance, vol. 12, no. 10, Article ID E071004, 2007. View at Google Scholar · View at Scopus
  87. A. Söderström, A. Lindberg, and Y. Andersson, “EHEC O157 outbreak in Sweden from locally produced lettuce, August-September 2005,” Euro Surveillance, vol. 10, no. 9, Article ID E050922, 2005. View at Google Scholar · View at Scopus
  88. K. E. Emberland, K. Nygård, B. T. Heier et al., “Outbreak of Salmonella Kedougou in Norway associated with salami, April-June 2006,” Euro Surveillance, vol. 11, no. 7, Article ID E060706, 2006. View at Google Scholar · View at Scopus
  89. L. Guardabassi, M. Stegger, and R. Skov, “Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs,” Veterinary Microbiology, vol. 122, no. 3-4, pp. 384–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Nógrády, G. Kardos, A. Bistyák et al., “Prevalence and characterization of Salmonella infantis isolates originating from different points of the broiler chicken-human food chain in Hungary,” International Journal of Food Microbiology, vol. 127, no. 1-2, pp. 162–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Hasman, D. Mevius, K. Veldman, I. Olesen, and F. M. Aarestrup, “β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 115–121, 2005. View at Publisher · View at Google Scholar
  92. Y. Agersø, C. H. Lester, L. J. Porsbo et al., “Vancomycin-resistant Enterococcus faecalis isolates from a Danish patient and two healthy human volunteers are possibly related to isolates from imported turkey meat,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 4, pp. 844–845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Dambrosio, V. Lorusso, N. C. Quaglia et al., “Escherichia coli O26 in minced beef: prevalence, characterization and antimicrobial resistance pattern,” International Journal of Food Microbiology, vol. 118, no. 2, pp. 218–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Wilcks, S. R. Andersen, and T. R. Licht, “Characterization of transferable tetracycline resistance genes in Enterococcus faecalis isolated from raw food,” FEMS Microbiology Letters, vol. 243, no. 1, pp. 15–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. H. H. Wang, M. Manuzon, M. Lehman et al., “Food commensal microbes as a potentially important avenue intransmitting antibiotic resistance genes,” FEMS Microbiology Letters, vol. 254, no. 2, pp. 226–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. I. Klare, C. Konstabel, G. Werner et al., “Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 5, pp. 900–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. B. Flórez, M. S. Ammor, and B. Mayo, “Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci,” International Journal of Food Microbiology, vol. 121, no. 2, pp. 189–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. B. Kurenbach, C. Bohn, J. Prabhu, M. Abudukerim, U. Szewzyk, and E. Grohmann, “Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region,” Plasmid, vol. 50, no. 1, pp. 86–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Charpentier, G. Gerbaud, and P. Courvalin, “Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among gram-positive and gram-negative bacteria,” Journal of Bacteriology, vol. 181, no. 11, pp. 3368–3374, 1999. View at Google Scholar · View at Scopus
  100. J. Bertram, M. Stratz, and P. Durre, “Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria,” Journal of Bacteriology, vol. 173, no. 2, pp. 443–448, 1991. View at Google Scholar · View at Scopus
  101. G. Van Den Eede, H. Aarts, H. J. Buhk et al., “The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants,” Food and Chemical Toxicology, vol. 42, no. 7, pp. 1127–1156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Wiener, S. Egan, A. S. Huddleston, and E. M. H. Wellington, “Evidence for the transfer of antibiotic-resistance genes in soil populations of streptomycetes,” Molecular Ecology, vol. 7, pp. 1205–1216, 1998. View at Google Scholar · View at Scopus