Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2012, Article ID 201389, 10 pages
Research Article

Diversity across Seasons of Culturable Pseudomonas from a Desiccation Lagoon in Cuatro Cienegas, Mexico

1Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México, DF, Mexico
2Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92091, USA
3Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México, DF, Mexico

Received 20 June 2012; Accepted 15 August 2012

Academic Editor: Isabel Sá-Correia

Copyright © 2012 Alejandra Rodríguez-Verdugo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cuatro Cienegas basin (CCB) is a biodiversity reservoir within the Chihuahuan desert that includes several water systems subject to marked seasonality. While several studies have focused on biodiversity inventories, this is the first study that describes seasonal changes in diversity within the basin. We sampled Pseudomonas populations from a seasonally variable water system at four different sampling dates (August 2003, January 2004, January 2005, and August 2005). A total of 70 Pseudomonas isolates across seasons were obtained, genotyped by fingerprinting (BOX-PCR), and taxonomically characterized by 16S rDNA sequencing. We found 35 unique genotypes, and two numerically dominant lineages (16S rDNA sequences) that made up 64% of the sample: P. cuatrocienegasensis and P. otitidis. We did not recover genotypes across seasons, but lineages reoccurred across seasons; P. cuatrocienegasensis was isolated exclusively in winter, while P. otitidis was only recovered in summer. We statistically show that taxonomic identity of isolates is not independent of the sampling season, and that winter and summer populations are different. In addition to the genetic description of populations, we show exploratory measures of growth rates at different temperatures, suggesting physiological differences between populations. Altogether, the results indicate seasonal changes in diversity of free-living aquatic Pseudomonas populations from CCB.