Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2012, Article ID 326452, 11 pages
http://dx.doi.org/10.1155/2012/326452
Review Article

Advances in Bacteriophage-Mediated Control of Plant Pathogens

1Department of Microbiology & Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
2New Zealand Institute for Plant & Food Research, Private Bag 4704, Christchurch 8140, New Zealand

Received 3 May 2012; Accepted 11 June 2012

Academic Editor: Beatriz Martinez

Copyright © 2012 Rebekah A. Frampton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Ronald, “Plant genetics, sustainable agriculture and global food security,” Genetics, vol. 188, no. 1, pp. 11–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Gilligan, “Sustainable agriculture and plant diseases: an epidemiological perspective,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1492, pp. 741–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Stokstad, “Agriculture. Dread citrus disease turns up in California, Texas,” Science, vol. 336, no. 6079, pp. 283–284, 2012. View at Google Scholar
  4. M. Scortichini, S. Marcelletti, P. Ferrante Petriccione, and G. Firrao, “Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen,” Molecular Plant Pathology, vol. 13, no. 7, pp. 631–640, 2012. View at Publisher · View at Google Scholar
  5. “Kiwifruit Vine Health,” 2012, http://www.kvh.org.nz/.
  6. D. A. Cooksey, “Genetics of bactericide resistance in plant pathogenic bacteria,” Annual Review of Phytopathology, vol. 28, pp. 201–219, 1990. View at Publisher · View at Google Scholar
  7. P. S. McManus, V. O. Stockwell, G. W. Sundin, and A. L. Jones, “Antibiotic use in plant agriculture,” Annual Review of Phytopathology, vol. 40, pp. 443–465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. Dye, “Control of Pseudomonas syringae with streptomycin,” Nature, vol. 172, no. 4380, pp. 683–684, 1953. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Behlau, B. I. Canteros, G. V. Minsavage, J. B. Jones, and J. H. Graham, “Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis,” Applied and Environmental Microbiology, vol. 77, no. 12, pp. 4089–4096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. H. Hwang, R. L. Morgan, S. F. Sarkar, P. W. Wang, and D. S. Guttman, “Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5182–5191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Cooksey, “Molecular mechanisms of copper resistance and accumulation in bacteria,” FEMS Microbiology Reviews, vol. 14, no. 4, pp. 381–386, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Hirst, H. H. Riche, and C. L. Bascomb, “Copper accumulation in the soils of apple orchards near Wisbech,” Plant Pathology, vol. 10, no. 3, pp. 105–108, 1961. View at Publisher · View at Google Scholar
  13. U. Pietrzak and D. C. McPhail, “Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia,” Geoderma, vol. 122, no. 2–4, pp. 151–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Okabe and M. Goto, “Bacteriophages of Plant Pathogens,” Annual Review of Phytopathology, vol. 1, pp. 397–418, 1963. View at Publisher · View at Google Scholar
  15. B. Balogh, J. B. Jones, F. B. Iriarte, and M. T. Momol, “Phage therapy for plant disease control,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 48–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Jones, L. E. Jackson, B. Balogh, A. Obradovic, F. B. Iriarte, and M. T. Momol, “Bacteriophages for plant disease control,” Annual Review of Phytopathology, vol. 45, pp. 245–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Svircev, A.J. Castle, and S. M. Lehman, “Bacteriophages for control of phytopathogens in food production systems,” in Bacteriophages in the Control of Food- and Waterborne Pathogens, P. M. Sabour and M.W. Griffiths, Eds., pp. 79–102, ASM Press, Washington, DC, USA, 2010. View at Google Scholar
  18. Z. Klement, “Some new specific bacteriophages for plant pathogenic Xanthomonas spp,” Nature, vol. 184, no. 4694, pp. 1248–1249, 1959. View at Publisher · View at Google Scholar · View at Scopus
  19. N. K. Petty, T. J. Evans, P. C. Fineran, and G. P. C. Salmond, “Biotechnological exploitation of bacteriophage research,” Trends in Biotechnology, vol. 25, no. 1, pp. 7–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Schofield, C. T. Bull, I. Rubio, W. P. Wechter, C. Westwater, and I. J. Molineux, “Development of an engineered “bioluminescent” reporter phage for the detection of bacterial blight of crucifers,” Applied and Environmental Microbiology, vol. 78, no. 10, pp. 3592–3598, 2012. View at Publisher · View at Google Scholar
  21. M. R. J. Clokie and A. M. Kropinski, Eds., Bacteriophages Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, Humana Press, New York, NY, USA, 2009.
  22. A. M. Svircev, S.M. Lehman, P. Sholberg, D. Roach, and A. J. Castle, “Phage biopesticides and soil bacteria: multilayered and complex interactions,” in Biocommunication in Soil Microorganisms, G. Witzany, Ed., pp. 215–235, Springer, Berlin, Germany, 2011. View at Google Scholar
  23. E. M. Adriaenssens, J. Van Vaerenbergh, D. Vandenheuvel et al., “T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by “Dickeya solani”,” PLoS ONE, vol. 7, no. 3, Article ID e33227, 2012. View at Google Scholar
  24. J. Boulé, P. L. Sholberg, S. M. Lehman, D. T. O'gorman, and A. M. Svircev, “Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada,” Canadian Journal of Plant Pathology, vol. 33, no. 3, pp. 308–317, 2011. View at Google Scholar
  25. B. Balogh, B. I. Canteros, R. E. Stall, and J. B. Jones, “Control of citrus canker and citrus bacterial spot with bacteriophages,” Plant Disease, vol. 92, no. 7, pp. 1048–1052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Lehman, Development of a bacteriophage-based biopesticide for fire blight [Ph.D. thesis], Brock University, St Catharines, Canada, 2007.
  27. P. C. Fineran, N. K. Petty, and G. P. C. Salmond, “Transduction: host DNA transfer by bacteriophages,” in The Encyclopedia of Microbiology, M. Schaechter, Ed., Elsevier, 2009. View at Google Scholar
  28. H. S. Addy, A. Askora, T. Kawasaki, M. Fujie, and T. Yamada, “Utilization of filamentous phage ϕRSM3 to control bacterial wilt caused by Ralstonia solanacearum,” Plant Disease, vol. 96, no. 8, pp. 1204–1208, 2012. View at Google Scholar
  29. J. Borysowski, B. Weber-Dabrowska, and A. Górski, “Bacteriophage endolysins as a novel class of antibacterial agents,” Experimental Biology and Medicine, vol. 231, no. 4, pp. 366–377, 2006. View at Google Scholar · View at Scopus
  30. M. J. Loessner, “Bacteriophage endolysins—current state of research and applications,” Current Opinion in Microbiology, vol. 8, no. 4, pp. 480–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Echandi and M. Sun, “Isolation and characterization of a bacteriophage for the identification of Corynebacterium michiganense,” Phytopathology, vol. 63, pp. 1398–1401, 1973. View at Publisher · View at Google Scholar
  32. F. D. Cook and H. Katznelson, “Isolation of bacteriophages for the detection of Corynebacterium insidiosum, agent of bacterial wilt of alfalfa,” Canadian Journal of Microbiology, vol. 6, pp. 121–125, 1960. View at Google Scholar · View at Scopus
  33. J. Wittmann, R. Eichenlaub, and B. Dreiseikelmann, “The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains,” Microbiology, vol. 156, no. 8, pp. 2366–2373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wittmann, K.-H. Gartemann, R. Eichenlaub, and B. Dreiseikelmann, “Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis,” Bacteriophage, vol. 1, no. 1, pp. 6–14, 2011. View at Google Scholar
  35. H. W. Ackermann, D. Tremblay, and S. Moineau, “Long-term bacteriophage preservation,” World Federation For Culture Collections Newsletter, vol. 38, pp. 35–40, 2004. View at Google Scholar
  36. M. Ravensdale, T. J. Blom, J. A. Gracia-Garza, A. M. Svircev, and R. J. Smith, “Bacteriophages and the control of Erwinia carotovora subsp. carotovora,” Canadian Journal of Plant Pathology, vol. 29, no. 2, pp. 121–130, 2007. View at Google Scholar · View at Scopus
  37. T. Stonier, J. McSharry, and T. Speitel, “Agrobacterium tumefaciens Conn. IV. Bacteriophage PB21 and its inhibitory effect on tumor induction,” Journal of Virology, vol. 1, no. 2, pp. 268–273, 1967. View at Google Scholar · View at Scopus
  38. J. J. Gill, A. M. Svircev, R. Smith, and A. J. Castle, “Bacteriophages of Erwinia amylovora,” Applied and Environmental Microbiology, vol. 69, no. 4, pp. 2133–2138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. L. Schnabel and A. L. Jones, “Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora,” Applied and Environmental Microbiology, vol. 67, no. 1, pp. 59–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Tanaka Negishi and H. Maeda, “Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage,” Annals of the Phytopathological Society of Japan, vol. 56, no. 2, pp. 243–246, 1990. View at Publisher · View at Google Scholar
  41. A. Fujiwara, M. Fujisawa, R. Hamasaki, T. Kawasaki, M. Fujie, and T. Yamada, “Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages,” Applied and Environmental Microbiology, vol. 77, no. 12, pp. 4155–4162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. McKenna, K. A. El-Tarabily, G. E. S. T. J. Hardy, and B. Dell, “Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes,” Plant Pathology, vol. 50, no. 6, pp. 666–675, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. E. L. Civerolo and H. L. Kiel, “Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage,” Phytopathology, vol. 59, pp. 1966–1967, 1969. View at Google Scholar
  44. J. M. Lang, D. H. Gent, and H. F. Schwartz, “Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator,” Plant Disease, vol. 91, no. 7, pp. 871–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. P. K. Borah, J. K. Jindal, and J. P. Verma, “Integrated management of bacterial leaf spot of mungbean with bacteriophages of Xav and chemicals,” Journal of Mycology and Plant Pathology, vol. 30, no. 1, pp. 19–21, 2000. View at Google Scholar
  46. D. L. McNeil, S. Romero, J. Kandula, C. Stark, A. Stewart, and S. Larsen, “Bacteriophages: a potential biocontrol agent against walnut blight (Xanthomonas campestris pv. juglandis),” New Zealand Plant Protection, vol. 54, pp. 220–224, 2001. View at Google Scholar
  47. A. Saccardi, E. Gambin, M. Zaccardelli, G. Barone, and U. Mazzucchi, “Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard,” Phytopathologia Mediterranea, vol. 32, pp. 206–210, 1993. View at Google Scholar
  48. A. Obradovic, J. B. Jones, M. T. Momol, B. Balogh, and S. M. Olson, “Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers,” Plant Disease, vol. 88, no. 7, pp. 736–740, 2004. View at Google Scholar · View at Scopus
  49. A. Obradovic, J. B. Jones, M. T. Momol et al., “Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato,” Plant Disease, vol. 89, no. 7, pp. 712–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. E. Flaherty, J. B. Jones, B. K. Harbaugh, G. C. Somodi, and L. E. Jackson, “Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages,” HortScience, vol. 35, no. 5, pp. 882–884, 2000. View at Google Scholar · View at Scopus
  51. B. Balogh, J. B. Jones, M. T. Momol et al., “Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato,” Plant Disease, vol. 87, no. 8, pp. 949–954, 2003. View at Google Scholar · View at Scopus
  52. F. B. Iriarte, B. Balogh, M. T. Momol, L. M. Smith, M. Wilson, and J. B. Jones, “Factors affecting survival of bacteriophage on tomato leaf surfaces,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1704–1711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. B. H. Chantrill, C. E. Coulthard, L. Dickinson, G. W. Inkley, W. Morris, and A. H. Pyle, “The action of plant extracts on a bacteriophage of Pseudomonas pyocyanea and on influenza A virus,” Journal of General Microbiology, vol. 6, no. 1-2, pp. 74–84, 1952. View at Google Scholar · View at Scopus
  54. A. Delitheos, E. Tiligada, A. Yannitsaros, and I. Bazos, “Antiphage activity in extracts of plants growing in Greece,” Phytomedicine, vol. 4, no. 2, pp. 117–124, 1997. View at Google Scholar · View at Scopus
  55. J. E. Flaherty, B. K. Harbaugh, J. B. Jones, G. C. Somodi, and L. E. Jackson, “H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium,” HortScience, vol. 36, no. 1, pp. 98–100, 2001. View at Google Scholar · View at Scopus
  56. J. Li Dennehy, “Differential bacteriophage mortality on exposure to copper,” Applied and Environmental Microbiology, vol. 77, no. 19, pp. 6878–6883, 2011. View at Publisher · View at Google Scholar
  57. “Commission decision of 30 January 2004 concerning the non-inclusion of certain active substances in Annex I to Council Directive 91/414/EEC and the withdrawl of authorisations for plant protection products containing these substances,” Official Journal of the European Union, 2004, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:037:0027:0031:EN:PDF.
  58. G. W. Sundin, N. A. Werner, K. S. Yoder, and H. S. Aldwinckle, “Field evaluation of biological control of fire blight in the Eastern United States,” Plant Disease, vol. 93, no. 4, pp. 386–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Billing, “Fire blight. Why do views on host invasion by Erwinia amylovora differ?” Plant Pathology, vol. 60, no. 2, pp. 178–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Palacio-Bielsa, M. Roselló, P. Llop, and M. M. López, “Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species,” Trees, vol. 26, no. 1, pp. 13–29, 2012. View at Publisher · View at Google Scholar
  61. P. Gómez and A. Buckling, “Bacteria-phage antagonistic coevolution in soil,” Science, vol. 332, no. 6025, pp. 106–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. J. M. Erskine, “Characteristics of Erwinia amylovora bacteriophage and its possible role in the epidemiology of fire blight,” Canadian Journal of Microbiology, vol. 19, no. 7, pp. 837–845, 1973. View at Google Scholar · View at Scopus
  63. M. J. Hattingh, S.V. Beer, and E. W. Lawson, “Scanning electron microscopy of apple blossoms colonized by Erwinia amylovora and E. herbicola,” Phytopathology, vol. 76, pp. 900–904, 1986. View at Publisher · View at Google Scholar
  64. S. M. Lehman, A. M. Kropinski, A. J. Castle, and A. M. Svircev, “Complete genome of the broad-host-range Erwinia amylovora phage φEa21-4 and its relationship to Salmonella phage f elix O1,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 2139–2147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. L. Norelli, A. L. Jones, and H. S. Aldwinckle, “Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple,” Plant Disease, vol. 87, no. 7, pp. 756–765, 2003. View at Google Scholar · View at Scopus
  66. N. W. Assadian, G. D. Di Giovanni, J. Enciso, J. Iglesias, and W. Lindemann, “The transport of waterborne solutes and bacteriophage in soil subirrigated with a wastewater blend,” Agriculture, Ecosystems and Environment, vol. 111, no. 1–4, pp. 279–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Kimura, Z. J. Jia, N. Nakayama, and S. Asakawa, “Ecology of viruses in soils: past, present and future perspectives,” Soil Science and Plant Nutrition, vol. 54, no. 1, pp. 1–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. H. S. Addy, A. Askora, T. Kawasaki, M. Fujie, and T. Yamada, “The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato,” Phytopathology, vol. 102, no. 3, pp. 244–251, 2012. View at Publisher · View at Google Scholar
  69. H. S. Addy, A. Askora, T. Kawasaki, M. Fujie, and T. Yamada, “Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by phiRSM filamentous phages,” Phytopathology, vol. 102, no. 5, pp. 469–477, 2012. View at Publisher · View at Google Scholar
  70. L. Bren, “Bacteria-eating virus approved as food additive,” FDA Consumer, vol. 41, no. 1, 2007. View at Google Scholar · View at Scopus
  71. “Regulatory position ListexTM,” 2012, http://www.micreosfoodsafety.com/en/listex-regulatory.aspx.
  72. M. Kutateladze and R. Adamia, “Bacteriophages as potential new therapeutics to replace or supplement antibiotics,” Trends in Biotechnology, vol. 28, no. 12, pp. 591–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Loc-Carrillo and S. T. Abedon, “Pros and cons of phage therapy,” Bacteriophage, vol. 1, no. 2, pp. 111–114, 2011. View at Publisher · View at Google Scholar
  74. A. Wright, C. H. Hawkins, E. E. Änggård, and D. R. Harper, “A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; A preliminary report of efficacy,” Clinical Otolaryngology, vol. 34, no. 4, pp. 349–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Merabishvili, J. P. Pirnay, G. Verbeken et al., “Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials,” PLoS ONE, vol. 4, no. 3, Article ID e4944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. R. J. Atterbury, “Bacteriophage biocontrol in animals and meat products,” Microbial Biotechnology, vol. 2, no. 6, pp. 601–612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Mahony, O. McAuliffe, R. P. Ross, and D. van Sinderen, “Bacteriophages as biocontrol agents of food pathogens,” Current Opinion in Biotechnology, vol. 22, no. 2, pp. 157–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. J. Gill, T. Hollyer, and P. M. Sabour, “Bacteriophages and phage-derived products as antibacterial therapeutics,” Expert Opinion on Therapeutic Patents, vol. 17, no. 11, pp. 1341–1350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage resistance mechanisms,” Nature Reviews Microbiology, vol. 8, no. 5, pp. 317–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. T. R. Blower, T.J. Evans, P.C. Fineran, I.K. Toth, I.J. Foulds, and G. P. C. Salmond, “Phage-receptor interactions and phage abortive infection: potential biocontrol factors in a bacterial plant pathogen,” in Biology of Molecular Plant-Microbe Interactions, H. Antoun et al., Ed., pp. 1–7, International Society for Molecular Plant-Microbe Interactions, St Paul, Minn, USA, 2010. View at Google Scholar
  81. T. J. Evans, A. Ind, E. Komitopoulou, and G. P. C. Salmond, “Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence,” Journal of Applied Microbiology, vol. 109, no. 2, pp. 505–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. T. J. Evans, A. Trauner, E. Komitopoulou, and G. P. C. Salmond, “Exploitation of a new flagellatropic phage of Erwinia for positive selection of bacterial mutants attenuated in plant virulence: towards phage therapy,” Journal of Applied Microbiology, vol. 108, no. 2, pp. 676–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. A. K. Vidaver, R. K. Koski, and J. L. Van Etten, “Bacteriophage phi6: a lipid containing virus of Pseudomonas phaseolicola,” Journal of Virology, vol. 11, no. 5, pp. 799–805, 1973. View at Google Scholar · View at Scopus
  84. J. S. Semancik, A. K. Vidaver, and J. L. Van Etten, “Characterization of a segmented double helical RNA from bacteriophage ϕ6,” Journal of Molecular Biology, vol. 78, no. 4, pp. 617–625, 1973. View at Google Scholar · View at Scopus
  85. X. Qiao, Y. Sun, J. Qiao, F. Di Sanzo, and L. Mindich, “Characterization of Φ2954, a newly isolated bacteriophage containing three dsRNA genomic segments,” BMC Microbiology, vol. 10, article 55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. S. Hirano and C. D. Upper, “Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 624–653, 2000. View at Google Scholar · View at Scopus
  87. V. Cvirkaite-Krupovič, M. M. Poranen, and D. H. Bamford, “Phospholipids act as secondary receptor during the entry of the enveloped, double-stranded RNA bacteriophage φ6,” Journal of General Virology, vol. 91, no. 8, pp. 2116–2120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. H. W. Smith and M. B. Huggins, “Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics,” Journal of General Microbiology, vol. 128, no. 2, pp. 307–318, 1982. View at Google Scholar · View at Scopus
  89. Y. Tanji, T. Shimada, M. Yoichi, K. Miyanaga, K. Hori, and H. Unno, “Toward rational control of Escherichia coli O157:H7 by a phage cocktail,” Applied Microbiology and Biotechnology, vol. 64, no. 2, pp. 270–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Tanji, T. Shimada, H. Fukudomi, K. Miyanaga, Y. Nakai, and H. Unno, “Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice,” Journal of Bioscience and Bioengineering, vol. 100, no. 3, pp. 280–287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. Agriphage, 2004, http://www.omnilytics.com/products/agriphage/agriphage_info/agriphage_overview.html.
  92. J. Qiao, X. Qiao, Y. Sun, and L. Mindich, “Role of host protein glutaredoxin 3 in the control of transcription during bacteriophage ϕ2954 infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 6000–6004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. Chopin, A. Chopin, and E. Bidnenko, “Phage abortive infection in lactococci: variations on a theme,” Current Opinion in Microbiology, vol. 8, no. 4, pp. 473–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. P. C. Fineran, T. R. Blower, I. J. Foulds, D. P. Humphreys, K. S. Lilley, and G. P. C. Salmond, “The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 3, pp. 894–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. T. R. Blower, F. L. Short, F. Rao et al., “Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes,” Nucleic Acids Research, vol. 40, no. 13, pp. 6158–6173, 2012. View at Publisher · View at Google Scholar
  96. T. R. Blower, X. Y. Pei, F. L. Short et al., “A processed noncoding RNA regulates an altruistic bacterial antiviral system,” Nature Structural and Molecular Biology, vol. 18, no. 2, pp. 185–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. T. R. Blower, P. C. Fineran, M. J. Johnson, I. K. Toth, D. P. Humphreys, and G. P. C. Salmond, “Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia,” Journal of Bacteriology, vol. 191, no. 19, pp. 6029–6039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Yamaguchi, J. H. Park, and M. Inouye, “Toxin-antitoxin systems in bacteria and archaea,” Annual Review of Genetics, vol. 45, pp. 61–79, 2011. View at Publisher · View at Google Scholar
  99. F. L. Short, T. R. Blower, and G. P. Salmond, “A promiscuous antitoxin of bacteriophage T4 ensures successful viral replication,” Molecular Microbiology, vol. 83, no. 4, pp. 665–668, 2012. View at Publisher · View at Google Scholar
  100. S. Al-Attar, E. R. Westra, J. Van Der Oost, and S. J. J. Brouns, “Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes,” Biological Chemistry, vol. 392, no. 4, pp. 277–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Przybilski, C. Richter, T. Gristwood, J. S. Clulow, R. B. Vercoe, and P. C. Fineran, “Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum,” RNA Biology, vol. 8, no. 3, pp. 517–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Rezzonico, T. H. M. Smits, and B. Duffy, “Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora,” Applied and Environmental Microbiology, vol. 77, no. 11, pp. 3819–3829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Semenova, M. Nagornykh, M. Pyatnitskiy, I. I. Artamonova, and K. Severinov, “Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae,” FEMS Microbiology Letters, vol. 296, no. 1, pp. 110–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Deveau, R. Barrangou, J. E. Garneau et al., “Phage response to CRISPR-encoded resistance in Streptococcus thermophilus,” Journal of Bacteriology, vol. 190, no. 4, pp. 1390–1400, 2008. View at Publisher · View at Google Scholar · View at Scopus