Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2012, Article ID 468539, 7 pages
http://dx.doi.org/10.1155/2012/468539
Research Article

Aromatic Compound-Dependent Staphylococcus aureus Is Safe in a Nasal Colonization Leukopenic Murine Model

1Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
2Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, Piso 12, C1121ABG Buenos Aires, Argentina

Received 20 March 2012; Revised 28 June 2012; Accepted 28 June 2012

Academic Editor: Todd R. Callaway

Copyright © 2012 María S. Barbagelata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. R. DeLeo and H. F. Chambers, “Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era,” The Journal of Clinical Investigation, vol. 119, no. 9, pp. 2464–2474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. D. Lowy, “Medical progress: Staphylococcus aureus infections,” The New England Journal of Medicine, vol. 339, no. 8, pp. 520–532, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. A. van Belkum, D. C. Melles, J. Nouwen et al., “Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus,” Infection, Genetics and Evolution, vol. 9, no. 1, pp. 32–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Carbon, “Costs of treating infections caused by methicillin-resistant staphylococci and vancomycin-resistant enterococci,” Journal of Antimicrobial Chemotherapy, vol. 44, pp. 31–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Huang and R. Platt, “Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization,” Clinical Infectious Diseases, vol. 36, no. 3, pp. 281–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. S. Huang, D. J. Diekema, D. K. Warren et al., “Strain-relatedness of methicillin-resistant Staphylococcus aureus isolates recovered from patients with repeated infection,” Clinical Infectious Diseases, vol. 46, no. 8, pp. 1241–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Donowitz, D. G. Maki, C. J. Crnich, P. G. Pappas, and K. V. Rolston, “Infections in the neutropenic patient–new views of an old problem,” American Society of Hematology, pp. 113–139, 2001. View at Google Scholar · View at Scopus
  8. V. G. Fowler, J. M. Miro, B. Hoen et al., “Staphylococcus aureus endocarditis: a consequence of medical progress,” JAMA, vol. 293, no. 24, pp. 3012–3021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Pizzo, “Fever in immunocompromised patients,” The New England Journal of Medicine, vol. 341, no. 12, pp. 893–900, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. J. O'Neill, “Toll-like receptor signal transduction and the tailoring of innate immunity: a role for Mal?” Trends in Immunology, vol. 23, no. 6, pp. 296–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Scapini, J. A. Lapinet-Vera, S. Gasperini, F. Calzetti, F. Bazzoni, and M. A. Cassatella, “The neutrophil as a cellular source of chemokines,” Immunological Reviews, vol. 177, pp. 195–203, 2000. View at Google Scholar · View at Scopus
  12. M. S. Barbagelata, L. Alvarez, M. Gordiola et al., “Auxotrophic mutant of Staphylococcus aureus interferes with nasal colonization by the wild type,” Microbes and Infection, vol. 13, no. 12-13, pp. 1081–1090, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. F. R. Buzzola, M. S. Barbagelata, R. L. Caccuri, and D. O. Sordelli, “Attenuation and persistence of and ability to induce protective immunity to a Staphylococcus aureusaroA mutant in mice,” Infection and Immunity, vol. 74, no. 6, pp. 3498–3506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. L. Bannerman, Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci That Grow Aerobically, ASM Press, Washington, DC, USA, 2003.
  15. F. Martineau, F. J. Picard, P. H. Roy, M. Ouellette, and M. G. Bergeron, “Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus,” Journal of Clinical Microbiology, vol. 36, no. 3, pp. 618–623, 1998. View at Google Scholar · View at Scopus
  16. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Clinical and Laboratory Standards Institute, 2006.
  17. P. D. Fey, B. Saïd-Salim, M. E. Rupp et al., “Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 196–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Pattee and D. S. Neveln, “Transformation analysis of three linkage groups in Staphylococcus aureus,” Journal of Bacteriology, vol. 124, no. 1, pp. 201–211, 1975. View at Google Scholar · View at Scopus
  19. M. Arnaud, A. Chastanet, and M. Débarbouillé, “New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria,” Applied and Environmental Microbiology, vol. 70, no. 11, pp. 6887–6891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Valle, A. Toledo-Arana, C. Berasain et al., “SarA and not σB is essential for biofilm development by Staphylococcus aureus,” Molecular Microbiology, vol. 48, no. 4, pp. 1075–1087, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. C. Kahl, M. Goulian, W. Van Wamel et al., “Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line,” Infection and Immunity, vol. 68, no. 9, pp. 5385–5392, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. National, Research, and Council, in Book Guide for the Care and Use of Laboratory Animals (NIH guide, revised), National Academy Press, Washington, DC, USA, 1996.
  23. J. M. Mei, F. Nourbakhsh, C. W. Ford, and D. W. Holden, “Identification of Staphylococcus auerus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis,” Molecular Microbiology, vol. 26, no. 2, pp. 399–407, 1997. View at Google Scholar · View at Scopus
  24. D. Finney, Probit Analysis, Cambrige University Press, London, UK, 1971.
  25. W. A. Craig, J. Redington, and S. C. Ebert, “Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections,” Journal of Antimicrobial Chemotherapy, vol. 27, pp. 29–40, 1991. View at Google Scholar · View at Scopus
  26. S. M. Lattar, L. P. N. Tuchscherr, D. Centrón et al., “Molecular fingerprinting of Staphylococcus aureus isolated from patients with osteomyelitis in Argentina and clonal distribution of the cap5(8) genes and of other selected virulence genes,” European Journal of Clinical Microbiology and Infectious Diseases. In press. View at Publisher · View at Google Scholar · View at Scopus
  27. F. C. Tenover, R. Arbeit, G. Archer et al., “Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus,” Journal of Clinical Microbiology, vol. 32, no. 2, pp. 407–415, 1994. View at Google Scholar · View at Scopus
  28. L. S. Quelle, A. Corso, M. Galas, and D. O. Sordelli, “STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods,” Diagnostic Microbiology and Infectious Disease, vol. 47, no. 3, pp. 455–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Van De Peer and R. De Wachter, “Treecon for windows: a software package for the construction and drawing of evolutionary trees for the microsoft windows environment,” Bioinformatics, vol. 10, no. 5, pp. 569–570, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. F. J. L. Aragão and A. C. M. Brasileiro, “Positive, negative and marker-free strategies for transgenic plant selection,” Brasilian Journal of Plant Physiology, vol. 14, no. 1, pp. 1–10, 2002. View at Google Scholar · View at Scopus
  31. A. Strandén, R. Frei, and A. F. Widmer, “Molecular typing of methicillin-resistant Staphylococcus aureus: can PCR replace pulsed-field gel electrophoresis?” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3181–3186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. E. S. Walker, J. E. Vasquez, R. Dula, H. Bullock, and F. A. Sarubbi, “Mupirocin-resistant, methicillin-resistant Staphylococcus aureus: does mupirocin remain effective?” Infection Control and Hospital Epidemiology, vol. 24, no. 5, pp. 342–346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. E. Simor, T. L. Stuart, L. Louie et al., “Mupirocin-resistant, methicillin-resistant Staphylococcus aureus strains in Canadian Hospitals,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 11, pp. 3880–3886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. E. Vasquez, E. S. Walker, B. W. Franzus, B. K. Overbay, D. R. Reagan, and F. A. Sarubbi, “The epidemiology of mupirocin resistance among methicillin-resistant Staphylococcus aureus at a Veterans' Affairs hospital,” Infection Control and Hospital Epidemiology, vol. 21, no. 7, pp. 459–464, 2000. View at Google Scholar · View at Scopus
  35. J. C. Jones, T. J. Rogers, P. Brookmeyer et al., “Mupirocin resistance in patients colonized with methicillin-resistant Staphylococcus aureus in a surgical intensive care unit,” Clinical Infectious Diseases, vol. 45, no. 5, pp. 541–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. D. Cookson, “The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice,” Journal of Antimicrobial Chemotherapy, vol. 41, no. 1, pp. 11–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Boers, I. Van Ess, S. M. Euser, R. Jansen, F. R. H. Tempelman, and B. M. W. Diederen, “An outbreak of a Multiresistant Methicillin-Susceptible Staphylococcus aureus (MR-MSSA) strain in a Burn Centre: the importance of routine molecular typing,” Burns, vol. 37, no. 5, pp. 808–813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Nannini, B. E. Murray, and C. A. Arias, “Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 516–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Sola, R. O. Lamberghini, M. Ciarlantini et al., “Heterogeneous vancomycin-intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of Infective Endocarditis in Argentina,” Annals of Clinical Microbiology and Antimicrobials, vol. 10, article 15, 2011. View at Publisher · View at Google Scholar · View at Scopus