Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2012, Article ID 578925, 5 pages
http://dx.doi.org/10.1155/2012/578925
Research Article

Isolation of Cellulose-Degrading Bacteria and Determination of Their Cellulolytic Potential

1Department of Biotechnology, National Institute of Technology, Raipur 492 010, India
2Indian Institute of Technology Delhi, New Delhi 110016, India

Received 29 July 2011; Accepted 11 October 2011

Academic Editor: Todd R. Callaway

Copyright © 2012 Pratima Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Shewale, “Glucosidase: its role in cellulase synthesis and hydrolysis of cellulose,” International Journal of Biochemistry, vol. 14, no. 6, pp. 435–443, 1982. View at Google Scholar · View at Scopus
  2. J. Woodward and A. Wiseman, “Fungal and other β-d-glucosidases: their properties and applications,” Enzyme and Microbial Technology, vol. 4, no. 2, pp. 73–79, 1983. View at Google Scholar
  3. D. D. Y. Ryu and M. Mandels, “Cellulases: biosynthesis and applications,” Enzyme and Microbial Technology, vol. 2, no. 2, pp. 91–102, 1980. View at Google Scholar · View at Scopus
  4. D. K. Samdhu and S. Bawa, “Improvement of cellulase activity in Trichoderma,” Applied Biochemistry and Biotechnology, vol. 34-35, no. 1, pp. 175–192, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Wood, “Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen ordered cellulose,” Journal of Biochemistry, vol. 260, pp. 37–43, 1989. View at Google Scholar
  6. R. J. Dillon and V. M. Dillon, “The gut bacteria of insects non-pathogenic interaction,” Annual Review of Entomology, vol. 49, pp. 71–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Saxena, J. Bahadur, and A. Varma, “Cellulose and hemicellulose degrading bacteria from termite gut and mould soils of India,” The Indian Journal of Microbiology, vol. 33, pp. 55–60, 1993. View at Google Scholar
  8. M. A. Milala, A. Shugaba, A. Gidado, A. C. Ene, and J. A. Wafar, “Studies on the use of agricultural wastes for cellulase enzyme production by A. niger,” Journal of Agriculture and Biological Science, vol. 1, pp. 325–328, 2005. View at Google Scholar
  9. W. H. Schwarz, “The cellulosome and cellulose degradation by anaerobic bacteria,” Applied Microbiology and Biotechnology, vol. 56, no. 5-6, pp. 634–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Ekperigin, “Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp,” African Journal of Biotechnology, vol. 6, no. 1, pp. 28–33, 2007. View at Google Scholar · View at Scopus
  11. P. Vaithanomsat, S. Chuichulcherm, and W. Apiwatanapiwat, “Bioethanol production from enzymatically saccharified sunflower stalks using steam explosion as pretreatment,” Proceedings of World Academy of Science, Engineering and Technology, vol. 37, pp. 140–143, 2009. View at Google Scholar
  12. N. Chakraborty, G. M. Sarkar, and S. C. Lahiri, “Cellulose degrading capabilities of cellulolytic bacteria isolated from the intestinal fluids of the silver cricket,” Environmentalist, vol. 20, no. 1, pp. 9–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. W. J. Lu, H. T. Wang, Y. F. Nie et al., “Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process,” Journal of Environmental Science and Health, Part B, vol. 39, no. 5-6, pp. 871–887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Y. Mswaka and N. Magan, “Wood degradation, and cellulase and ligninase production, by Trametes and other wood-inhabiting basidiomycetes from indigenous forests of Zimbabwe,” Mycological Research, vol. 102, no. 11, pp. 1399–1404, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Nutt, V. Sild, G. Prtterson, and G. Johansson, “Progress curve as a means for functional classification of cellulases,” Europian Journal of Biochemistry, vol. 258, p. 200, 1998. View at Google Scholar
  16. C. W. Hendricks, J. D. Doyle, and B. Hugley, “A new solid medium for enumerating cellulose-utilizing bacteria in soil,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 2016–2019, 1995. View at Google Scholar · View at Scopus
  17. P. Tailliez, H. Girard, J. Millet, and P. Beguin, “Enhanced cellulose fermentation by an asprogenous and ethanol tolerant mutant of Clostridium thermocellum,” Applied Environmental Microbiology, vol. 55, pp. 207–211, 1989. View at Google Scholar
  18. T. K. Ghose, “Mesurnment of cellulase activity,” Pure and Applied Chemistry, vol. 59, pp. 257–268, 1987. View at Google Scholar
  19. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  20. S. Poznanski, “The analysis of mixtures of ethyl alcohol, ethyl acetate, acetic acid and water,” Journal of the American Chemical Society, vol. 50, no. 4, pp. 981–988, 1928. View at Google Scholar · View at Scopus
  21. M. Wenzel, I. Schönig, M. Berchtold, P. Kämpfer, and H. König, “Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis,” Journal of Applied Microbiology, vol. 92, no. 1, pp. 32–40, 2002. View at Publisher · View at Google Scholar
  22. I. Delalibera Jr., J. Handelsman, and K. F. Raffa, “Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae),” Environmental Entomology, vol. 34, no. 3, pp. 541–547, 2005. View at Google Scholar · View at Scopus
  23. M. Ramrn, A. R. Alimon, K. Sijam, and N. Abdullah, “Filter paper degradation by bacteria isolated from local termite gut,” Research Journal of Microbiology, vol. 3, no. 8, pp. 565–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. W. J. Lu, H. T. Wang, S. J. Yang, Z. C. Wang, and Y. F. Nie, “Isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system,” Journal of General and Applied Microbiology, vol. 51, no. 6, pp. 353–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Hatami, H. A. Alikhsni, H. Besharati, N. salehrastin, M. Afrousheh, and Z. Y. Jahromi, “Investigation of aerobic cellulolytic bacteria in some of noeth forest and farming soils,” The American-Eurasian Journal of Agricultural & Environmental Sciences, vol. 5, pp. 713–716, 2008. View at Google Scholar
  26. I. Bichet-Hebe, A. M. Pourcher, L. Sutra, C. Comel, and G. Moguedet, “Detection of a whitening fluorescent agent as an indicator of white paper biodegradation: a new approach to study the kinetics of cellulose hydrolysis by mixed cultures,” Journal of Microbiological Methods, vol. 37, no. 2, pp. 101–109, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Satheesh Kumar, M. Subhosh Chandra, M. Sumanth, A. Vishnupriya, B. Rajasekhar Reddy, and Y. L. Choi, “Cellulolytic enzymes from submerged fermentation of different substrates by newly isolated Bacillus Spp. FME.,” Journal of Korean Society of Applied Biological Chemistry, vol. 52, pp. 17–21, 2009. View at Google Scholar
  28. V. Lenziou, P. Christakopoulos, D. Kekos, and B. J. Macris, “Simultaneous saccharification and fermentation of sweet sorghum carbohydrates to ethanol in a fed-batch process,” Biotechnology Letters, vol. 16, no. 9, pp. 983–988, 1994. View at Google Scholar · View at Scopus
  29. R. Eklund and G. Zacchi, “Simultaneous saccharification and fermentation of steam-pretreated willow,” Enzyme and Microbial Technology, vol. 17, no. 3, pp. 255–259, 1995. View at Publisher · View at Google Scholar · View at Scopus