Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2014, Article ID 698713, 7 pages
http://dx.doi.org/10.1155/2014/698713
Research Article

Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

Microbial Resource Technology Laboratory, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136 119, India

Received 31 July 2013; Accepted 13 November 2013; Published 29 January 2014

Academic Editor: Todd R. Callaway

Copyright © 2014 Deepansh Sharma and Baljeet Singh Saharan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. R. Marteau, “Probiotics in clinical conditions,” Clinical Reviews in Allergy and Immunology, vol. 22, no. 3, pp. 255–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. “Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria,” FAO/ WHO, 2012.
  3. J. Saavedra, “Probiotics and infectious diarrhea,” American Journal of Gastroenterology, vol. 95, no. 1, pp. S16–S18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P. M. Matricardi, F. Rosmini, V. Panetta, L. Ferrigno, and S. Bonini, “Hay fever and asthma in relation to markers of infection in the United States,” Journal of Allergy and Clinical Immunology, vol. 110, no. 3, pp. 381–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. H. Deegan, P. D. Cotter, C. Hill, and P. Ross, “Bacteriocins: biological tools for bio-preservation and shelf-life extension,” International Dairy Journal, vol. 16, no. 9, pp. 1058–1071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Collins, M. Caitriona, P. D. Guinane, and C. H. Cotter, “Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants,” Applied and Environmental Microbiology, vol. 78, no. 8, pp. 2923–2929, 2012. View at Publisher · View at Google Scholar
  7. S. Mills, C. Stanton, C. Hill, and R. P. Ross, “New developments and applications of bacteriocins and peptides in foods,” Annual Review of Food Science and Technology, vol. 2, pp. 299–329, 2011. View at Google Scholar · View at Scopus
  8. P. G. Casey, G. E. Gardiner, G. Casey et al., “A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1858–1863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Allende, F. A. Tomás-Barberán, and M. I. Gil, “Minimal processing for healthy traditional foods,” Trends in Food Science and Technology, vol. 17, no. 9, pp. 513–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Brashears, M. L. Galyean, G. H. Loneragan, J. E. Mann, and K. Killinger-Mann, “Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials,” Journal of Food Protection, vol. 66, no. 5, pp. 748–754, 2003. View at Google Scholar · View at Scopus
  11. B. S. Saharan, R. K. Sahu, and D. Sharma, “A Review on biosurfactants: fermentation, current developments and perspectives,” Genetic Engineering and Biotechnology Journal, vol. 2011, 14 pages, 2011. View at Google Scholar
  12. L. Rodrigues, I. M. Banat, J. Teixeira, and R. Oliveira, “Biosurfactants: potential applications in medicine,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 4, pp. 609–618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Henkel, M. M. Mueller, J. H. Kuegler et al., “Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production,” Process Biochemistry, vol. 47, pp. 1207–1219, 2012. View at Publisher · View at Google Scholar
  14. M. M. Mueller, J. H. Kuegler, M. Henkel et al., “Rhamnolipids-next generation surfactants?” Journal of Biotechnology, vol. 162, pp. 366–380, 2012. View at Publisher · View at Google Scholar
  15. M. Rogosa and M. E. Sharpe, “Species differentiation of human vaginal lactobacilli,” Journal of General Microbiology, vol. 23, pp. 197–201, 1960. View at Google Scholar · View at Scopus
  16. J. G. Cappuccino and N. Sherman, Microbiology: A Laboratory Manual, Pearson, San Francisco, Calif, USA, 10th edition, 2013.
  17. S. H. Kim, E. J. Lim, S. O. Lee, J. D. Lee, and T. H. Lee, “Purification and characterization of biosurfactants from Nocardia sp. L-417,” Biotechnology and Applied Biochemistry, vol. 31, no. 3, pp. 249–253, 2000. View at Google Scholar · View at Scopus
  18. U. Schillinger and F. K. Lücke, “Antibacterial activity of Lactobacillus sake isolated from meat,” Applied and Environmental Microbiology, vol. 55, no. 8, pp. 1901–1906, 1989. View at Google Scholar · View at Scopus
  19. D.-S. Sheu, Y.-T. Wang, and C.-Y. Lee, “Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR,” Microbiology, vol. 146, no. 8, pp. 2019–2025, 2000. View at Google Scholar · View at Scopus
  20. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  21. S. Kumar, K. Tamura, and M. Nei, Manual for MEGA: Molecular Evolutionary Genetics Analysis Software, Pennsylvania State University, University Park, Pa, USA, 1993.
  22. C. Syldatk, S. Lang, U. Matulovic, and F. Wagner, “Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874,” Zeitschrift fur Naturforschung C, vol. 40, no. 1-2, pp. 61–67, 1985. View at Google Scholar · View at Scopus
  23. T. Schenk, I. Schuphan, and B. Schmidt, “High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa,” Journal of Chromatography A, vol. 693, no. 1, pp. 7–13, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Hörmann, M. M. Müller, C. Syldatk, and R. Hausmann, “Rhamnolipid production by Burkholderia plantarii DSM 9509T,” European Journal of Lipid Science and Technology, vol. 112, no. 6, pp. 674–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Anandaraj and P. Thivakaran, “Isolation and production of biosurfactant producing organism from oil spilled soil,” Journal of Biosciences Technology, vol. 1, no. 3, pp. 120–126, 2010. View at Google Scholar
  26. E. Z. Gudina, J. A. Teixeira, and L. R. Rodrigues, “Biosurfactant-producing lactobacilli: screening, production profiles, and effect of medium composition,” Applied and Environmental Soil Science, vol. 2011, Article ID 201254, 9 pages, 2011. View at Publisher · View at Google Scholar
  27. S.-C. Lee, S.-J. Lee, S.-H. Kim et al., “Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil,” Bioresource Technology, vol. 99, no. 7, pp. 2288–2292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Rodríguez, J. M. Salgado, S. Cortés, and J. M. Domínguez, “Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures produced under different pH conditions,” Letters in Applied Microbiology, vol. 51, no. 2, pp. 226–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Hattori and Y. Sakaki, “Dideoxy sequencing method using denatured plasmid templates,” Analytical Biochemistry, vol. 152, no. 2, pp. 232–238, 1986. View at Google Scholar · View at Scopus