Table of Contents Author Guidelines Submit a Manuscript
International Journal of Microbiology
Volume 2016, Article ID 9015802, 9 pages
http://dx.doi.org/10.1155/2016/9015802
Research Article

In Vitro Antimicrobial Activity of Spices and Medicinal Herbs against Selected Microbes Associated with Juices

1Department of Microbiology, Kurukshetra University, Kurukshetra, India
2Vaidyanath Research, Training and Diagnostic Centre, Kurukshetra, India

Received 18 September 2015; Revised 12 November 2015; Accepted 15 November 2015

Academic Editor: Joseph Falkinham

Copyright © 2016 Romika Dhiman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Aneja, R. Dhiman, N. K. Aggarwal, and A. Aneja, “Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices,” International Journal of Microbiology, vol. 2014, Article ID 758942, 14 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Tajkarimi, S. A. Ibrahim, and D. O. Cliver, “Antimicrobial herb and spice compounds in food,” Food Control, vol. 21, no. 9, pp. 1199–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Dhiman, N. K. Aggarwal, and M. Kaur, “Comparative evaluation of antimicrobial activities of commonly used indian spices against microbes associated with juices,” Research Journal of Microbiology, vol. 10, no. 4, pp. 170–180, 2015. View at Publisher · View at Google Scholar
  4. N. C. C. Silva and A. Fernandes Júnior, “Biological properties of medicinal plants: a review of their antimicrobial activity,” The Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 16, no. 3, pp. 402–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Shan, Y.-Z. Cai, J. D. Brooks, and H. Corke, “The in vitro antibacterial activity of dietary spice and medicinal herb extracts,” International Journal of Food Microbiology, vol. 117, no. 1, pp. 112–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. Arora and J. Kaur, “Antimicrobial activity of spices,” International Journal of Antimicrobial Agents, vol. 12, no. 3, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Sofia, R. Prasad, V. K. Vijay, and A. K. Srivastava, “Evaluation of antibacterial activity of Indian spices against common foodborne pathogens,” International Journal of Food Science and Technology, vol. 42, no. 8, pp. 910–915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999. View at Google Scholar · View at Scopus
  9. L. R. Beuchat, “Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables,” Microbes and Infection, vol. 4, no. 4, pp. 413–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Friedman, P. R. Henika, and R. E. Mandrell, “Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica,” Journal of Food Protection, vol. 65, no. 10, pp. 1545–1560, 2002. View at Google Scholar · View at Scopus
  11. M. Friedman, P. R. Henika, C. E. Levin, and R. E. Mandrell, “Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice,” Journal of Agricultural and Food Chemistry, vol. 52, no. 19, pp. 6042–6048, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Burt, “Essential oils: their antibacterial properties and potential applications in foods: a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Mosqueda-Melgar, R. M. Raybaudi-Massilia, and O. Martín-Belloso, “Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials,” Innovative Food Science and Emerging Technologies, vol. 9, no. 3, pp. 328–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. Raybaudi-Massilia, J. Mosqueda-Melgar, R. Soliva-Fortuny, and O. Martín-Belloso, “Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials,” Comprehensive Reviews in Food Science and Food Safety, vol. 8, no. 3, pp. 157–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. J. Sunilson, R. Suraj, G. Rejitha, K. Anandarajagopal, A. V. A. G. Kumari, and P. Promwichit, “In vitro antimicrobial evaluation of Zingiber officinale, Curcuma longa and Alpinia galanga extracts as natural food preservatives,” American Journal of Food Technology, vol. 4, no. 5, pp. 192–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. S. Weerakkody, N. Caffin, M. S. Turner, and G. A. Dykes, “In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria,” Food Control, vol. 21, no. 10, pp. 1408–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. S. Negi, “Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application,” International Journal of Food Microbiology, vol. 156, no. 1, pp. 7–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. K. Tyagi, D. Gottardi, A. Malik, and M. E. Guerzoni, “Anti-yeast activity of mentha oil and vapours through in vitro and in vivo (real fruit juices) assays,” Food Chemistry, vol. 137, no. 1–4, pp. 108–114, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Tyagi, D. Gottardi, A. Malik, and M. E. Guerzoni, “Chemical composition, in vitro anti-yeast activity and fruit juice preservation potential of lemon grass oil,” LWT—Food Science and Technology, vol. 57, no. 2, pp. 731–737, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Bukvicki, D. Gottardi, A. K. Tyagi et al., “Scapania nemorea liverwort extracts: investigation on volatile compounds, in vitro antimicrobial activity and control of Saccharomyces cerevisiae in fruit juice,” LWT—Food Science and Technology, vol. 55, no. 2, pp. 452–458, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Lucera, C. Costa, A. Conte, and M. A. Del Nobile, “Food applications of natural antimicrobial compounds,” Frontiers in Microbiology, vol. 3, article 287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Mosqueda-Melgar, R. M. Raybaudi-Massilia, and O. Martin Belloso, “Microbiological shelf life and sensory evaluation of fruit juices treated by high intensity electric fields and antimicrobials,” Food and Bioproducts Processing, vol. 10, pp. 123–142, 2012. View at Google Scholar
  23. K. A. Lawlor, J. D. Schuman, P. G. Simpson, and P. J. Taormina, “Microbiological spoilage of beverages,” in Compendium of the Microbiological Spoilage of Foods and Beverages, W. H. Sperber and M. P. Doyle, Eds., Food Microbiology and Food Safety, Springer, New York, NY, USA, 2009. View at Google Scholar
  24. K. R. Aneja, R. Dhiman, N. K. Aggarwal, V. Kumar, and M. Kaur, “Microbes associated with freshly prepared juices of citrus and carrots,” International Journal of Food Science, vol. 2014, Article ID 408085, 7 pages, 2014. View at Publisher · View at Google Scholar
  25. C. Sharma, K. R. Aneja, R. Kasera, and R. Aneja, “Antimicrobial potential of Terminalia chebula Retz. Fruit extracts against ear pathogens,” World Journal of Otorhinolaryngology, vol. 2, pp. 8–13, 2012. View at Google Scholar
  26. K. J. Gohil, J. A. Patel, and A. K. Gajjar, “Pharmacological review on Centella asiatica: a potential herbal cure-all,” Indian Journal of Pharmaceutical Sciences, vol. 72, no. 5, pp. 546–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Dora and J. Khatri, “Centella asiatica: elexier of life,” International Journal of Research in Ayurveda and Pharmacy, vol. 2, no. 2, pp. 431–438, 2011. View at Google Scholar
  28. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, “Turmeric and curcumin: biological actions and medicinal applications,” Current Science, vol. 87, no. 1, pp. 44–53, 2004. View at Google Scholar · View at Scopus
  29. K. R. Aneja, R. Joshi, and C. Sharma, “In vitro antimicrobial activity of Sapindus mukorossi and Emblica officinalis against dental caries pathogens,” Ethnobotanical Leaflets, vol. 14, pp. 402–412, 2010. View at Google Scholar
  30. M. M. Kumbalwar, A. B. Ingle, and M. H. Shende, “Antimicrobial activity of Mentha arvensis (pudina) against on gram negative bacteria,” Indian Journal of Applied Research, vol. 4, no. 4, pp. 488–489, 2011. View at Publisher · View at Google Scholar
  31. M. B. Azmi and S. A. Qureshi, “Methanolic root extract of Rauwolfia serpentina benth improves the glycemic, antiatherogenic, and cardioprotective indices in alloxan-induced diabetic mice,” Advances in Pharmacological Sciences, vol. 2012, Article ID 376429, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. Aneja, C. Sharma, and R. Joshi, “Antimicrobial activity of Terminalia arjuna Wight & Arn: an ethnomedicinal plant against pathogens causing ear infection,” Brazilian Journal of Otorhinolaryngology, vol. 78, no. 1, pp. 68–74, 2012. View at Google Scholar · View at Scopus
  33. S. K. Verma and A. Kumar, “Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions,” Asian Journal of Pharmaceutical and Clinical Research, vol. 4, no. 1, pp. 1–4, 2011. View at Google Scholar · View at Scopus
  34. K. R. Aneja, R. Joshi, and C. Sharma, “Potency of Barleria prionitis L. bark extracts against oral diseases causing strains of bacteria and fungi of clinical origin,” New York Science, vol. 3, pp. 5–12, 2010. View at Google Scholar
  35. S. R. Sridhar, R. V. Rajagopal, R. Rajavel, S. Masilamani, and S. Narasimhan, “Antifungal activity of some essential oils,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7596–7599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. K. S. Al-Burtamani, M. O. Fatope, R. G. Marwah, A. K. Onifade, and S. H. Al-Saidi, “Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 107–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. T. K. Chattapadhyay and P. Dureja, “Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones,” Journal of Agricultural and Food Chemistry, vol. 54, no. 6, pp. 2129–2133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Das, R. K. S. Tiwari, and D. K. Shrivastava, “Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends,” Journal of Medicinal Plants Research, vol. 4, no. 2, pp. 104–111, 2010. View at Google Scholar · View at Scopus
  39. K. A. Hammer, C. F. Carson, and T. V. Riley, “Antimicrobial activity of essential oils and other plant extracts,” Journal of Applied Microbiology, vol. 86, no. 6, pp. 985–990, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Thongson, P. M. Davidson, W. Mahakarnchanakul, and J. Weiss, “Antimicrobial activity of ultrasound-assisted solvent-extracted spices,” Letters in Applied Microbiology, vol. 39, no. 5, pp. 401–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Ahmad and A. Z. Beg, “Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 113–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. B. K. Dash, H. M. Faruquee, S. K. Biswas, M. K. Alam, S. M. Sisir, and U. K. Prodhan, “Antibacterial and antifungal activities of several extracts of Centella asiatica L. against some human pathogenic microbes,” Life Sciences and Medicine Research, vol. 2011, pp. 1–5, 2011. View at Google Scholar
  43. T. Arumugam, M. Ayyanar, Y. J. Koil Pillai, and T. Sekar, “Phytochemical screening and antibacterial activity of leaf and callus extracts of Centella asiatica,” Bangladesh Journal of Pharmacology, vol. 6, no. 1, pp. 55–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. T. James and I. A. Dubery, “Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) urban,” Molecules, vol. 14, no. 10, pp. 3922–3941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Dwivedi, “Terminalia arjuna Wight & Arn.—A useful drug for cardiovascular disorders,” Journal of Ethnopharmacology, vol. 114, no. 2, pp. 114–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Jain, P. P. Yadav, V. Gill, N. Vasudeva, and N. Singla, “Terminalia arjuna a sacred medicinal plant: phytochemical and pharmacological profile,” Phytochemistry Reviews, vol. 8, no. 2, pp. 491–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Saeed and P. Tariq, “Antimicrobial activities of Emblica officinalis and Coriandrum sativum against gram positive bacteria and Candida albicans,” Pakistan Journal of Botany, vol. 39, no. 3, pp. 913–917, 2007. View at Google Scholar · View at Scopus
  48. B. Mahesh and S. Satish, “Antimicrobial activity of some important medicinal plant against plant and human pathogens,” World Journal of Agricultural Sciences, vol. 4, pp. 839–843, 2008. View at Google Scholar
  49. S. Arora, S. Dhillon, G. Rani, and A. Nagpal, “The in vitro antibacterial/synergistic activities of Withania somnifera extracts,” Fitoterapia, vol. 75, no. 3-4, pp. 385–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Nostro, M. P. Germanò, V. D'Angelo, A. Marino, and M. A. Cannatelli, “Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity,” Letters in Applied Microbiology, vol. 30, no. 5, pp. 379–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. N. A. A. Ali, W.-D. Jülich, C. Kusnick, and U. Lindequist, “Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 173–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Palombo and S. J. Semple, “Antibacterial activity of traditional Australian medicinal plants,” Journal of Ethnopharmacology, vol. 77, no. 2-3, pp. 151–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Nair and S. Chanda, “Activity of some medicinal plants against certain pathogenic bacterial strains,” Indian Journal of Pharmacology, vol. 38, no. 2, pp. 142–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Ceylan and D. Y. C. Fung, “Antimicrobial activity of spices,” Journal of Rapid Methods and Automation in Microbiology, vol. 12, no. 1, pp. 1–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. P. López, C. Sánchez, R. Batlle, and C. Nerín, “Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains,” The Journal of Agricultural and Food Chemistry, vol. 53, no. 17, pp. 6939–6946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Kapoor, U. Narain, and K. Misra, “Bio-active conjugates of curcumin having ester, peptide, thiol and disulfide links,” Journal of Scientific and Industrial Research, vol. 66, no. 8, pp. 647–650, 2007. View at Google Scholar · View at Scopus
  57. K. S. Parvathy, P. S. Negi, and P. Srinivas, “Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside,” Food Chemistry, vol. 115, no. 1, pp. 265–271, 2009. View at Publisher · View at Google Scholar · View at Scopus