Abstract

The concept of “pattern” is introduced, formally defined, and used to analyze various measures of the complexity of finite binary sequences and other objects. The standard Kolmogoroff-Chaitin-Solomonoff complexity measure is considered, along with Bennett's ‘logical depth’, Koppel's ‘sophistication'’, and Chaitin's analysis of the complexity of geometric objects. The pattern-theoretic point of view illuminates the shortcomings of these measures and leads to specific improvements, it gives rise to two novel mathematical concepts--“orders” of complexity and “levels” of pattern, and it yields a new measure of complexity, the “structural complexity”, which measures the total amount of structure an entity possesses.