International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences / 2001 / Article

Open Access

Volume 25 |Article ID 569542 | 11 pages |

Rayleigh-Benard convection in a viscoelastic fluid-filled high-porosity medium with nonuniform basic temperature gradient

Received16 Feb 1998


The qualitative effect of nonuniform temperature gradient on the linear stability analysis of the Rayleigh-Benard convection problem in a Boussinesquian, viscoelastic fluid-filled, high-porosity medium is studied numerically using the single-term Galerkin technique. The eigenvalue is obtained for free-free, free-rigid, and rigid-rigid boundary combinations with isothermal temperature conditions. Thermodynamics and also the present stability analysis dictates the strain retardation time to be less than the stress relaxation time for convection to set in as oscillatory motions in a high-porosity medium. Furthermore, the analysis predicts the critical eigenvalue for the viscoelastic problem to be less than that of the corresponding Newtonian fluid problem.

Copyright © 2001 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

91 Views | 624 Downloads | 7 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.