Abstract

Two sets of the Heun functions are introduced via integrals. Theorems about expanding functions with respect to these sets are proven. A number of integral and series representations as well as integral equations and asymptotic formulas are obtained for these functions. Some of the coefficients of the series are orthogonal (J-orthogonal) functions of discrete variables and may be interpreted as orthogonal polynomials. Other sets of the coefficients are biorthonormal. Expanding infinite vectors to series with respect to the coefficients is discussed. Certain Legendre functions of complex degree are limiting cases of the studied functions. This leads to new relations for Legendre functions and associated integral transforms. The treated Heun functions find a use for solving dual Fourier series equations which are reduced to the Fredholm integral equations of the second kind. Explicit solutions are obtained in a special case.