Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2006 (2006), Article ID 37014, 11 pages
http://dx.doi.org/10.1155/IJMMS/2006/37014

Universal approximation theorem for Dirichlet series

1Laboratoire de Mathématiques, UMR 8524, Université des Sciences et Technologies de Lille 1 (USTL), Cité Scientifique, Villeneuve d'Ascq 59650, France
2École Centrale de Lille, Cite Scientifique, BP 48, Villeneuve d'Ascq Cedex 59651, France

Received 14 September 2005; Revised 11 May 2006; Accepted 30 May 2006

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Bagchi, “A joint universality theorem for Dirichlet L-functions,” Mathematische Zeitschrift, vol. 181, no. 3, pp. 319–334, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. F. Bayart, Opérateurs de composition sur des espaces de séries de Dirichlet et problèmes d'hypercyclicité simultanée, M.S. thesis, University of Lille, Lille, 2002.
  3. F. Bayart, “Topological and algebraic genericity of divergence and universality,” Studia Mathematica, vol. 167, no. 2, pp. 161–181, 2005. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. G. Costakis, “Some remarks on universal functions and Taylor series,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 128, no. 1, pp. 157–175, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. G. Costakis and V. Vlachou, “A generic result concerning univalent universal functions,” Archiv der Mathematik, vol. 82, no. 4, pp. 344–351, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. G. Costakis and V. Vlachou, “Identical approximative sequence for various notions of universality,” Journal of Approximation Theory, vol. 132, no. 1, pp. 15–24, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. V. Nestoridis, “Universal Taylor series,” Annales de l'Institut Fourier (Grenoble), vol. 46, no. 5, pp. 1293–1306, 1996. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. V. Nestoridis and C. Papadimitropoulos, “Abstract theory of universal series and an application to Dirichlet series,” Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 341, no. 9, pp. 539–543, 2005. View at Google Scholar · View at MathSciNet