Open Access

Ahmed Ayache, David E. Dobbs, Othman Echi, "Universal mapping properties of some pseudovaluation domains and related quasilocal domains", *International Journal of Mathematics and Mathematical Sciences*, vol. 2006, Article ID 072589, 12 pages, 2006. https://doi.org/10.1155/IJMMS/2006/72589

# Universal mapping properties of some pseudovaluation domains and related quasilocal domains

#### Abstract

If *strong local homomorphism*
(resp., *radical local homomorphism*) if

#### References

- D. F. Anderson, A. Badawi, and D. E. Dobbs, “Pseudo-valuation rings. II,”
*Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B. Articoli di Ricerca Matematica*, vol. 3, no. 2, pp. 535–545, 2000. View at: Google Scholar | Zentralblatt MATH | MathSciNet - D. F. Anderson and D. E. Dobbs, “Pairs of rings with the same prime ideals,”
*Canadian Journal of Mathematics*, vol. 32, no. 2, pp. 362–384, 1980. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Ayache, D. E. Dobbs, and O. Echi, “Reflection of some quasi-local domains,”
*Journal of Algebra and Its Applications*, vol. 5, no. 2, pp. 201–213, 2006. View at: Google Scholar - A. Badawi, “A visit to valuation and pseudo-valuation domains,” in
*Zero-Dimensional Commutative Rings (Knoxville, Tenn, 1994)*, vol. 171 of*Lecture Notes in Pure and Appl. Math.*, pp. 155–161, Dekker, New York, 1995. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi, “On $\Phi $-pseudo-valuation rings. II,”
*Houston Journal of Mathematics*, vol. 26, no. 3, pp. 473–480, 2000. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi, “On chained overrings of pseudo-valuation rings,”
*Communications in Algebra*, vol. 28, no. 5, pp. 2359–2366, 2000. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi, “On $\phi $-chained rings and $\phi $-pseudo-valuation rings,”
*Houston Journal of Mathematics*, vol. 27, no. 4, pp. 725–736, 2001. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi, “On divided rings and $\phi $-pseudo-valuation rings,”
*International Journal of Commutative Rings*, vol. 1, no. 2, pp. 51–60, 2002. View at: Google Scholar | Zentralblatt MATH - A. Badawi, “Pseudo-valuation domains: a survey,” in
*Mathematics & Mathematics Education (Bethlehem, 2000)*, pp. 38–59, World Scientific, New Jersey, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi, D. F. Anderson, and D. E. Dobbs, “Pseudo-valuation rings,” in
*Commutative Ring Theory (Fès, 1995)*, vol. 185 of*Lecture Notes in Pure and Appl. Math.*, pp. 57–67, Dekker, New York, 1997. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Badawi and E. G. Houston, “Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains,”
*Communications in Algebra*, vol. 30, no. 4, pp. 1591–1606, 2002. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet - P.-J. Cahen, “Couples d'anneaux partageant un idéal [Pairs of rings that share an ideal],”
*Archiv der Mathematik (Basel)*, vol. 51, no. 6, pp. 505–514, 1988. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet - G. W. Chang, H. Nam, and J. Park, “Strongly primary ideals,” in
*Arithmetical Properties of Commutative Rings and Monoids*, vol. 241 of*Lecture Notes Pure Appl. Math.*, pp. 378–388, Chapman & Hall/CRC, Florida, 2005. View at: Google Scholar | MathSciNet - Y. H. Cho, “Pseudo-valuation domains,”
*Korean Mathematical Society. Communications*, vol. 11, no. 2, pp. 281–284, 1996. View at: Google Scholar | Zentralblatt MATH | MathSciNet - Y. H. Cho, “Pseudo valuation rings,”
*Honam Mathematical Journal*, vol. 23, no. 1, pp. 21–28, 2001. View at: Google Scholar | Zentralblatt MATH | MathSciNet - D. E. Dobbs, “Coherence, ascent of going-down, and pseudo-valuation domains,”
*Houston Journal of Mathematics*, vol. 4, no. 4, pp. 551–567, 1978. View at: Google Scholar | Zentralblatt MATH | MathSciNet - D. E. Dobbs, M. Fontana, J. A. Huckaba, and I. J. Papick, “Strong ring extensions and pseudovaluation domains,”
*Houston Journal of Mathematics*, vol. 8, no. 2, pp. 167–184, 1982. View at: Google Scholar | Zentralblatt MATH | MathSciNet - M. Fontana, “Topologically defined classes of commutative rings,”
*Annali di Matematica Pura ed Applicata. Serie Quarta*, vol. 123, pp. 331–355, 1980. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet - H. Gebru, “Krull's conjecture, pseudo-valuation domains and PF-dimension,”
*Mathematics Journal of Toyama University*, vol. 21, pp. 153–161, 1998. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Grothendieck and J. A. Dieudonné,
*Eléments de Géométrie Algébrique. I*, Springer, New York, 1971. - J. R. Hedstrom and E. G. Houston, “Pseudo-valuation domains,”
*Pacific Journal of Mathematics*, vol. 75, no. 1, pp. 137–147, 1978. View at: Google Scholar | Zentralblatt MATH | MathSciNet - J. R. Hedstrom and E. G. Houston, “Pseudo-valuation domains. II,”
*Houston Journal of Mathematics*, vol. 4, no. 2, pp. 199–207, 1978. View at: Google Scholar | Zentralblatt MATH | MathSciNet - B. G. Kang and M. H. Park, “Completion of a globalized pseudo-valuation domain,”
*Houston Journal of Mathematics*, vol. 28, no. 4, pp. 701–710, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet - S. Lang,
*Algebra*, Addison-Wesley, Massachusetts, 3rd edition, 1993. View at: Zentralblatt MATH - R. Matsuda and T. Sugatani, “Cancellation ideals in pseudo-valuation domains,”
*Communications in Algebra*, vol. 23, no. 11, pp. 3983–3991, 1995. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Okabe, “Some ideal-theoretical characterizations of divided domains,”
*Houston Journal of Mathematics*, vol. 12, no. 4, pp. 563–577, 1986. View at: Google Scholar | Zentralblatt MATH | MathSciNet

#### Copyright

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.