International Journal of Mathematics and Mathematical Sciences

International Journal of Mathematics and Mathematical Sciences / 2006 / Article

Open Access

Volume 2006 |Article ID 78135 | 12 pages | https://doi.org/10.1155/IJMMS/2006/78135

C-compactness modulo an ideal

Received24 Jan 2006
Revised30 Mar 2006
Accepted04 Apr 2006
Published31 Jul 2006

Abstract

We investigate the concepts of quasi-H-closed modulo an ideal which generalizes quasi-H-closedness and C-compactness modulo an ideal which simultaneously generalizes C-compactness and compactness modulo an ideal. We obtain a characterization of maximal C-compactness modulo an ideal. Preservation of C-compactness modulo an ideal by functions is also investigated.

References

  1. J. Dontchev, M. Ganster, and D. A. Rose, “Ideal resolvability,” Topology and Its Applications, vol. 93, no. 1, pp. 1–16, 1999. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  2. S. V. Fomin, “Extensions of topological spaces,” Annals of Mathematics. Second Series, vol. 44, pp. 471–480, 1943. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  3. T. R. Hamlett and D. Janković, “Compactness with respect to an ideal,” Bollettino della Unione Matematica Italiana. B. Serie VII, vol. 4, no. 4, pp. 849–861, 1990. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  4. L. L. Herrington and P. E. Long, “Characterizations of C-compact spaces,” Proceedings of the American Mathematical Society, vol. 52, pp. 417–426, 1975. View at: C-compact%20spaces&author=L. L. Herrington &author=P. E. Long&publication_year=1975" target="_blank">Google Scholar | Zentralblatt MATH | MathSciNet
  5. D. Janković and T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, no. 4, pp. 295–310, 1990. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  6. K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966. View at: Zentralblatt MATH | MathSciNet
  7. N. Levine, “Simple extensions of topologies,” The American Mathematical Monthly, vol. 71, no. 1, pp. 22–25, 1964. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  8. A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, “On precontinuous and weak precontinuous mappings,” Proceedings of the Mathematical and Physical Society of Egypt, no. 53, pp. 47–53 (1983), 1982. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  9. R. L. Newcomb, Topologies which are compact modulo an ideal, M.S. thesis, University of California, Santa Barbara, California, 1967.
  10. O. Njȧstad, “On some classes of nearly open sets,” Pacific Journal of Mathematics, vol. 15, pp. 961–970, 1965. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  11. D. V. Rancin, “Compactness modulo an ideal,” Soviet Mathematics. Doklady, vol. 13, pp. 193–197, 1972. View at: Google Scholar | Zentralblatt MATH
  12. V. Renuka Devi, D. Sivaraj, and T. Tamizh Chelvam, “Codense and completely codense ideals,” Acta Mathematica Hungarica, vol. 108, no. 3, pp. 197–205, 2005. View at: Publisher Site | Google Scholar | MathSciNet
  13. P. Samuels, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society. Second Series, vol. 10, no. 4, pp. 409–416, 1975. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  14. R. Vaidyanathaswamy, “The localisation theory in set-topology,” Proceedings of the Indian Academy of Sciences. Section A, vol. 20, pp. 51–61, 1944. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  15. R. Vaidyanathaswamy, Set Topology, Chelsea, New York, 2nd edition, 1960. View at: MathSciNet
  16. G. Viglino, “C-compact spaces,” Duke Mathematical Journal, vol. 36, no. 4, pp. 761–764, 1969. View at: Publisher Site | C-compact%20spaces&author=G. Viglino&publication_year=1969" target="_blank">Google Scholar | Zentralblatt MATH | MathSciNet

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder