Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 93142, 11 pages
http://dx.doi.org/10.1155/IJMMS/2006/93142

Veronese curves and webs: interpolation

1Département de Mathématique et Génie Informatique, Ecole Nationale Supérieure Polytechnique, Université de Yaoundé I, BP 8390, Yaoundé, Cameroon
2Département de Mathématiques, Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, Montpellier Cedex 5 34095, France

Received 11 June 2006; Revised 30 September 2006; Accepted 19 October 2006

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Akivis, “Three-webs of multidimensional surfaces,” Trudy Geometricheskogo Seminara, vol. 2, pp. 7–31, 1969 (Russian). View at Google Scholar · View at MathSciNet
  2. M. A. Akivis and V. V. Goldberg, “Differential geometry of webs,” in Handbook of Differential Geometry, Vol. I, F. J. E. Dillen and L. C. A. Verstraelen, Eds., pp. 1–152, North-Holland, Amsterdam, 2000, chapter 1. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. M. A. Akivis and A. M. Shelekhov, Geometry and Algebra of Multidimensional Three-Webs, vol. 82 of Mathematics and Its Applications (Soviet Series), Kluwer Academic, Dordrecht, 1992. View at Zentralblatt MATH · View at MathSciNet
  4. W. Blaschke, Einführung in die geometrie der waben, Birkhäuser, Basel und Stuttgart, 1955. View at Zentralblatt MATH · View at MathSciNet
  5. W. Blaschke and G. Bol, Geometrie der Gewebe, Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1938. View at Zentralblatt MATH
  6. R. Brouzet, “About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus,” Journal of Mathematical Physics, vol. 34, no. 4, pp. 1309–1313, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. J. P. Dufour, “Introduction aux tissus,” in Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1990/1991 (Montpellier, 1990/1991), pp. 55–76, Univ. Montpellier II, Montpellier, 1992. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. I. M. Gelfand and I. Zakharevich, “Webs, Veronese curves, and bi-Hamiltonian systems,” Journal of Functional Analysis, vol. 99, no. 1, pp. 150–178, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. V. V. Goldberg, Theory of Multicodimensional (n+1)-Webs, vol. 44 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1988. View at Zentralblatt MATH · View at MathSciNet
  10. J. Grifone and E. Salem, Eds., Web Theory and Related Topics, J. Grifone and E. Salem, Eds., World Scientific, New Jersey, 2001, papers from the Conference on Webs held in Toulouse, December 1996, Edited by J. Grifone and E. Salem. View at Zentralblatt MATH · View at MathSciNet
  11. P. T. Nagy, “Invariant tensorfields and the canonical connection of a 3-web,” Aequationes Mathematicae, vol. 35, no. 1, pp. 31–44, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, II,” Indagationes Mathematicae, vol. 17, pp. 390–403, 1955. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. Panasyuk, “Veronese webs for bi-Hamiltonian structures of higher corank,” in Poisson Geometry (Warsaw, 1998), vol. 51 of Banach Center Publications, pp. 251–261, Polish Acad. Sci., Warsaw, 2000. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. Panasyuk, “On integrability of generalized Veronese curves of distributions,” Reports on Mathematical Physics, vol. 50, no. 3, pp. 291–297, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. F.-J. Turiel, “Classification locale simultanée de deux formes symplectiques compatibles,” Manuscripta Mathematica, vol. 82, no. 3-4, pp. 349–362, 1994. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. F.-J. Turiel, “C-classification des germes de tissus de Veronese,” Comptes Rendus de l'Académie des Sciences. Series I. Mathematics, vol. 329, no. 5, pp. 425–428, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. F.-J. Turiel, “C-équivalence entre tissus de Veronese et structures bihamiltoniennes,” Comptes Rendus de l'Académie des Sciences. Series I. Mathematics, vol. 328, no. 10, pp. 891–894, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. F.-J. Turiel, “Tissus de Veronese analytiques de codimension supérieure et structures bihamiltoniennes,” Comptes Rendus de l'Académie des Sciences. Series I. Mathematics, vol. 331, no. 1, pp. 61–64, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet