Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 98175, 10 pages
http://dx.doi.org/10.1155/IJMMS/2006/98175

The truncated exponential polynomials, the associated Hermite forms and applications

1ENEA, UTS Tecnologie Fisiche Avanzate, Centro Ricerche Frascati, Via Enrico Fermi 45, Frascati, Rome 00044, Italy
2Dipartimento di Energetica, Università degli Studi di Rome “La Sapienza,”, 14 Via A. Scarfa, Rome 00161, Italy

Received 3 April 2006; Accepted 3 April 2006

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan, New York, 1985. View at MathSciNet
  2. P. Appell and J. Kampé de Fériet, Fonctions hypérgeométriques et Hypérspheriques; polinòmes d'Hermite, Gauthier-Villars, Paris, 1926.
  3. G. Dattoli, “Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle,” in Advanced Special Functions and Applications (Melfi, 1999), D. Cocolicchio, G. Dattoli, and H. M. Srivastava, Eds., vol. 1 of Proc. Melfi Sch. Adv. Top. Math. Phys., pp. 147–164, Aracne, Rome, 2000. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. G. Dattoli, C. Cesarano, and D. Sacchetti, “A note on truncated polynomials,” Applied Mathematics and Computation, vol. 134, no. 2-3, pp. 595–605, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. G. Dattoli, H. M. Srivastava, and D. Sacchetti, “The Hermite polynomials and the Bessel functions from a general point of view,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 57, pp. 3633–3642, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  6. F. Gori, “Flattened Gaussian beams,” Optics Communications, vol. 107, no. 5-6, pp. 335–341, 1994. View at Publisher · View at Google Scholar
  7. A. Siegman, Lasers, University Science Books, California, 1986.
  8. H. M. Srivastava and H. L. Manocha, A Treatise on Generatine Functions, Ellis-Horwood Series: Mathematics and Its Applications, John Wiley & Sons, New York, 1984.