Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2007, Article ID 43834, 9 pages
http://dx.doi.org/10.1155/2007/43834
Research Article

An Lp-Lq-Version of Morgan's Theorem for the n-Dimensional Euclidean Motion Group

Département de Mathématiques, Faculté des Sciences de Monastir, Université de Monastir, Monastir 5019, Tunisia

Received 9 August 2006; Revised 11 January 2007; Accepted 15 January 2007

Academic Editor: Wolfgang zu Castell

Copyright © 2007 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Hardy, “A theorem concerning Fourier transforms,” Journal of the London Mathematical Society, vol. 8, pp. 227–231, 1933. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. G. W. Morgan, “A note on Fourier transforms,” Journal of the London Mathematical Society, vol. 9, pp. 187–192, 1934. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. A. Beurling, The Collected Works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989. View at Zentralblatt MATH · View at MathSciNet
  4. A. Beurling, The Collected Works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989. View at Zentralblatt MATH · View at MathSciNet
  5. L. Hörmander, “A uniqueness theorem of Beurling for Fourier transform pairs,” Arkiv för Matematik, vol. 29, no. 2, pp. 237–240, 1991. View at Zentralblatt MATH · View at MathSciNet
  6. S. C. Bagchi and S. K. Ray, “Uncertainty principles like Hardy's theorem on some Lie groups,” Journal of the Australian Mathematical Society. Series A, vol. 65, no. 3, pp. 289–302, 1998. View at Zentralblatt MATH · View at MathSciNet
  7. S. Ben Farah and K. Mokni, “Uncertainty principle and the Lp-Lq-version of Morgan's theorem on some groups,” Russian Journal of Mathematical Physics, vol. 10, no. 3, pp. 245–260, 2003. View at Zentralblatt MATH · View at MathSciNet
  8. L. Gallardo and K. Trimèche, “Un analogue d'un théorème de Hardy pour la transformation de Dunkl,” Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 334, no. 10, pp. 849–854, 2002. View at Zentralblatt MATH · View at MathSciNet
  9. E. K. Narayanan and S. K. Ray, “Lp version of Hardy's theorem on semi-simple Lie groups,” Proceedings of the American Mathematical Society, vol. 130, no. 6, pp. 1859–1866, 2002. View at Publisher · View at Google Scholar
  10. A. Bonami, B. Demange, and P. Jaming, “Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms,” Revista Matemática Iberoamericana, vol. 19, no. 1, pp. 23–55, 2003. View at Zentralblatt MATH · View at MathSciNet
  11. M. Cowling and J. F. Price, “Generalisations of Heisenberg's inequality,” in Harmonic Analysis (Cortona, 1982), vol. 992 of Lecture Notes in Math., pp. 443–449, Springer, Berlin, Germany, 1983. View at Zentralblatt MATH · View at MathSciNet
  12. R. P. Sarkar and S. Thangavelu, “On theorems of Beurling and Hardy for the Euclidean motion group,” The Tohoku Mathematical Journal. Second Series, vol. 57, no. 3, pp. 335–351, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995. View at Zentralblatt MATH · View at MathSciNet
  14. K. I. Gross and R. A. Kunze, “Fourier decompositions of certain representations,” in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), W. M. Boothby and G. L. Weiss, Eds., pp. 119–139, Dekker, New York, NY, USA, 1972. View at Zentralblatt MATH · View at MathSciNet
  15. M. Sugiura, “Unitary Representations and Harmonic Analysis. An Introduction,” Kodansha, Tokyo, Japan, 1975. View at Zentralblatt MATH · View at MathSciNet