Research Article | Open Access

T -Homotopy and Refinement of Observation—Part II: Adding New T -Homotopy Equivalences

**Academic Editor:**Monica Clapp

#### Abstract

This paper is the second part of a series of papers about a new
notion of

#### References

- P. Gaucher, “T-homotopy and refinement of observation—I: introduction,” to appear in
*Electronic Notes in Theoretical Computer Sciences*, http://arxiv.org/abs/math.AT/0505152. View at: Google Scholar - P. Gaucher and E. Goubault, “Topological deformation of higher dimensional automata,”
*Homology, Homotopy, and Applications*, vol. 5, no. 2, pp. 39–82, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet - P. Gaucher, “Comparing globular complex and flow,”
*New York Journal of Mathematics*, vol. 11, pp. 97–150, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet - P. Gaucher, “T-homotopy and refinement of observation—III: invariance of the branching and merging homologies,”
*New York Journal of Mathematics*, vol. 12, pp. 319–348, 2006. View at: Google Scholar | MathSciNet - P. Gaucher, “T-homotopy and refinement of observation—IV: invariance of the underlying homotopy type,”
*New York Journal of Mathematics*, vol. 12, pp. 63–95, 2006. View at: Google Scholar | MathSciNet - P. Gaucher, “Inverting weak dihomotopy equivalence using homotopy continuous flow,”
*Theory and Applications of Categories*, vol. 16, no. 3, pp. 59–83, 2006. View at: Google Scholar | Zentralblatt MATH | MathSciNet - P. Gaucher, “A model category for the homotopy theory of concurrency,”
*Homology, Homotopy, and Applications*, vol. 5, no. 1, pp. 549–599, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet - M. Hovey,
*Model Categories*, vol. 63 of*Mathematical Surveys and Monographs*, American Mathematical Society, Providence, RI, USA, 1999. View at: Google Scholar | Zentralblatt MATH | MathSciNet - P. S. Hirschhorn,
*Model Categories and Their Localizations*, vol. 99 of*Mathematical Surveys and Monographs*, American Mathematical Society, Providence, RI, USA, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet - W. G. Dwyer and J. Spaliński, “Homotopy theories and model categories,” in
*Handbook of Algebraic Topology*, pp. 73–126, North-Holland, Amsterdam, The Netherlands, 1995. View at: Google Scholar | Zentralblatt MATH | MathSciNet - D. G. Quillen,
*Homotopical Algebra*, Lecture Notes in Mathematics, no. 43, Springer, Berlin, Germany, 1967. View at: Google Scholar | Zentralblatt MATH | MathSciNet - R. Brown,
*Topology: A Geometric Account of General Topology, Homotopy Types and the Fundamental Groupoid*,*Ellis Horwood Series: Mathematics and Its Applications*, Ellis Horwood, Chichester, UK, 2nd edition, 1988. View at: Google Scholar | Zentralblatt MATH | MathSciNet - J. P. May,
*A Concise Course in Algebraic Topology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill, USA, 1999. View at: Google Scholar | Zentralblatt MATH | MathSciNet - L. G. Lewis,
*The stable category and generalized Thom spectra*, Ph.D. thesis, University of Chicago, Chicago, Ill, USA, 1978. View at: Google Scholar - P. Gaucher, “Homological properties of non-deterministic branchings of mergings in higher dimensional automata,”
*Homology, Homotopy, and Applications*, vol. 7, no. 1, pp. 51–76, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Strøm, “Note on cofibrations,”
*Mathematica Scandinavica*, vol. 19, pp. 11–14, 1966. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Strøm, “Note on cofibrations—II,”
*Mathematica Scandinavica*, vol. 22, pp. 130–142, 1968. View at: Google Scholar | Zentralblatt MATH | MathSciNet - A. Strøm, “The homotopy category is a homotopy category,”
*Archiv der Mathematik*, vol. 23, pp. 435–441, 1972. View at: Google Scholar | Zentralblatt MATH | MathSciNet - M. Cole, “Many homotopy categories are homotopy categories,”
*Topology and Its Applications*, vol. 153, no. 7, pp. 1084–1099, 2006. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet - P. J. Higgins,
*Notes on Categories and Groupoids*, Van Nostrand Rienhold Mathematical Studies, no. 32, Van Nostrand Reinhold, London, UK, 1971. View at: Google Scholar | Zentralblatt MATH | MathSciNet - D. Dugger and D. C. Isaksen, “Topological hypercovers and ${\mathbb{A}}^{1}$-realizations,”
*Mathematische Zeitschrift*, vol. 246, no. 4, pp. 667–689, 2004. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet

#### Copyright

Copyright © 2007 Philippe Gaucher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.