`International Journal of Mathematics and Mathematical SciencesVolume 2008, Article ID 391265, 15 pageshttp://dx.doi.org/10.1155/2008/391265`
Research Article

## On the Rational Recursive Sequence 𝑥 𝑛 + 1 = ( 𝛼 − 𝛽 𝑥 𝑛 ) / ( 𝛾 − 𝛿 𝑥 𝑛 − 𝑥 𝑛 − 𝑘 )

1Mathematics Department, Faculty of Science, Taif University, El-Taif 5700, El-Hawiyah, Kingdom of Saudi Arabia
2Mathematics Department, Faculty of Science, Zagazig University, Zagazig 4419, Egypt
3Mathematics Department, Faculty of Science, El-Minia University, El Minia 61519, Egypt

Received 1 November 2007; Accepted 11 May 2008

Copyright © 2008 E. M. E. Zayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. V. L. Kocić and G. Ladas, “Global attractivity in a second-order nonlinear difference equation,” Journal of Mathematical Analysis and Applications, vol. 180, no. 1, pp. 144–150, 1993.
2. V. L. Kocić, G. Ladas, and I. W. Rodrigues, “On rational recursive sequences,” Journal of Mathematical Analysis and Applications, vol. 173, no. 1, pp. 127–157, 1993.
3. V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, vol. 256 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
4. M. T. Aboutaleb, M. A. El-Sayed, and A. E. Hamza, “Stability of the recursive sequence ${x}_{n+1}=\left(\alpha -\beta {x}_{n}\right)/\left(\gamma +{x}_{n-1}\right)$,” Journal of Mathematical Analysis and Applications, vol. 261, no. 1, pp. 126–133, 2001.
5. X.-X. Yan, W. T. Li, and H.-R. Sun, “Global attractivity in a higher order nonlinear difference equation,” Applied Mathematics E-Notes, vol. 2, pp. 51–58, 2002.
6. W.-S. He and W.-T. Li, “Attractivity in a nonlinear delay difference equation,” Applied Mathematics E-Notes, vol. 4, pp. 48–53, 2004.
7. S. Stević, “On the recursive sequence ${x}_{n+1}=\left(\alpha +\beta {x}_{n}\right)/\left(\gamma -{x}_{n-k}\right)$,” Bulletin of the Institute of Mathematics, vol. 32, no. 1, pp. 61–70, 2004.
8. R. DeVault, W. Kosmala, G. Ladas, and S. W. Schultz, “Global behavior of ${y}_{n+1}=\left(p+{y}_{n-k}\right)/\left(q{y}_{n}+{y}_{n-k}\right)$,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 7, pp. 4743–4751, 2001.
9. H. M. El-Owaidy and M. M. El-Afifi, “A note on the periodic cycle of ${x}_{n+2}=\left(1+{x}_{n+1}\right)/\left({x}_{n}\right)$,” Applied Mathematics and Computation, vol. 109, no. 2-3, pp. 301–306, 2000.
10. C. H. Gibbons, M. R. S. Kulenović, G. Ladas, and H. D. Voulov, “On the trichotomy character of ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+{x}_{n}\right)$,” Journal of Difference Equations and Applications, vol. 8, no. 1, pp. 75–92, 2002.
11. E. A. Grove, G. Ladas, M. Predescu, and M. Radin, “On the global character of ${y}_{n+1}=\left(p{y}_{n-1}+{y}_{n-2}\right)/\left(q+{y}_{n-2}\right)$,” Mathematical Sciences Research Hot-Line, vol. 5, no. 7, pp. 25–39, 2001.
12. M. R. S. Kulenović, G. Ladas, and N. R. Prokup, “On the recursive sequence ${x}_{n+1}=\left(\alpha {x}_{n}+\beta {x}_{n-1}\right)/\left(A+{x}_{n}\right)$,” Journal of Difference Equations and Applications, vol. 6, no. 5, pp. 563–576, 2000.
13. M. R. S. Kulenović, G. Ladas, and N. R. Prokup, “A rational difference equation,” Computers & Mathematics with Applications, vol. 41, no. 5-6, pp. 671–678, 2001.
14. S. A. Kuruklis, “The asymptotic stability of ${x}_{n+1}-a{x}_{n}+b{x}_{n-k}=0$,” Journal of Mathematical Analysis and Applications, vol. 188, no. 3, pp. 719–731, 1994.
15. M. R. S. Kulenović, G. Ladas, L. F. Martins, and I. W. Rodrigues, “The dynamics of ${x}_{n+1}=\left(\alpha +\beta {x}_{n}\right)/\left(A+B{x}_{n}+C{x}_{n-1}\right)$: facts and conjectures,” Computers & Mathematics with Applications, vol. 45, no. 6–9, pp. 1087–1099, 2003.
16. G. Ladas, “On the recursive sequence ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+B{x}_{n}+C{x}_{n-1}\right)$,” Journal of Difference Equations and Applications, vol. 1, no. 3, pp. 317–321, 1995.
17. E. Camouzis, G. Ladas, and H. D. Voulov, “On the dynamics of ${x}_{n+1}=\left(\alpha +\gamma {x}_{n-1}+\delta {x}_{n-2}\right)/\left(A+{x}_{n-2}\right)$,” Journal of Difference Equations and Applications, vol. 9, no. 8, pp. 731–738, 2003.
18. S. Stević, “On the recursive sequence ${x}_{n+1}=\left(-1/{x}_{n}\right)+\left(A/{x}_{n-1}\right)$,” International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 1, pp. 1–6, 2001.
19. S. Stević, “The recursive sequence ${x}_{n+1}=g\left({x}_{n},{x}_{n-1}\right)/\left(A+{x}_{n}\right)$,” Applied Mathematics Letters, vol. 15, no. 3, pp. 305–308, 2002.