Abstract

Suffcient conditions, necessary conditions for faster convergent infinite series, faster 𝜏-convergent infinite series are studied. The faster convergence of infinite series of Kummer's type is proved.

1. Introduction

There have been papers devoted to the study of faster convergence of sequences. Certain methods concerning acceleration of convergence of sequences of partial sums of fixed series using linear or nonlinear transformations of partial sums of series are studied in [1]. The acceleration field of subsequence matrix transformations with respect to the convergence rate of the sequence being accelerated are studied in [2]. In [3], it is discussed a class of methods for summing sequences which are generalizations of a method due to Salzer [4], which accelerate some convergent sequences especially monotone sequences. In [5], is characterized the summability field of a matrix 𝐴 by showing 𝐴 is convergence preserving over the set of all sequences which converge faster than some fixed sequence π‘₯, 𝐴 is convergence preserving over the set of all sequences, or 𝐴 only preserves the limit of a set of constant sequences. Statistical acceleration convergence of sequences was discussed in [6]. The notion of faster convergent series with positive terms is defined in [7] and the notion of 𝜏-convergent series is defined in [8–10]. The statistical convergence of infinite series as a special case of 𝜏-convergence of infinite series is discussed in [11–14].

In this paper, some questions related to sufficient conditions and necessary conditions for faster convergent infinite series are studied, faster 𝜏-convergent series are defined and studied, and faster convergence of series of Kummer's type is proved. In [7, page 146], it is mentioned the Kummer's result: if βˆ‘βˆžπ‘›=1π‘Žπ‘› is convergent series with positive terms and with an unknown sum π‘Ž, βˆ‘βˆžπ‘›=1𝑐𝑛 is a convergent series with positive terms and with a known sum 𝑐, and limπ‘›β†’βˆžπ‘Žπ‘›/𝑐𝑛=𝑝>0, then the Kummer series βˆ‘βˆžπ‘›=1𝑏𝑛 has the same sum as βˆ‘βˆžπ‘›=1π‘Žπ‘› and is a faster convergent series than βˆ‘βˆžπ‘›=1π‘Žπ‘›, if all terms of βˆ‘βˆžπ‘›=1𝑏𝑛 are positive. Hence we can calculate the unknown sum π‘Ž faster by summation terms of the Kummer series βˆ‘βˆžπ‘›=1𝑏𝑛, which is constructed by βˆ‘βˆžπ‘›=1π‘Žπ‘›, βˆ‘βˆžπ‘›=1𝑐𝑛, and 𝑝. In Lemma 4.1, we proved a faster convergence of the Kummer series βˆ‘βˆžπ‘›=1𝑏𝑛 to the unknown sum π‘Ž of βˆ‘βˆžπ‘›=1π‘Žπ‘› without conditions of positivity of 𝑝 and terms of βˆ‘βˆžπ‘›=1π‘Žπ‘›,βˆ‘βˆžπ‘›=1𝑏𝑛,βˆ‘βˆžπ‘›=1𝑐𝑛.

We denote by β„• the set of all positive integers and by ℝ the set of all real numbers.

Definition 1.1 (See [2]). Let βˆ‘βˆžπ‘›=1π‘Žπ‘›, βˆ‘βˆžπ‘›=1𝑏𝑛 be convergent real series with the same sum, with nonzero terms and such that 𝑏𝑛+𝑏𝑛+1+…≠0,π‘›βˆˆβ„•. The series βˆ‘βˆžπ‘›=1π‘Žπ‘› is called faster convergent than βˆ‘βˆžπ‘›=1𝑏𝑛 if limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0.

Lemma 1.2 (See [7]). Let βˆ‘βˆžπ‘›=1π‘Žπ‘›, βˆ‘βˆžπ‘›=1𝑏𝑛 be convergent real series with positive terms and with the same sum. If limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0, then limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0.

In what follows, we do not assume equality of sum of convergent series βˆ‘βˆžπ‘›=1π‘Žπ‘›,βˆ‘βˆžπ‘›=1𝑏𝑛 because we can construct series βˆ‘βˆžπ‘›=1π‘Žβˆ—π‘›,βˆ‘βˆžπ‘›=1π‘βˆ—π‘›, where π‘Žβˆ—π‘›=π‘Žπ‘› and π‘βˆ—π‘›=𝑏𝑛 for 𝑛β‰₯2 with the same sum.

2. Faster Convergent Series

Lemma 2.1. Let βˆ‘βˆžπ‘›=1π‘Žπ‘›, βˆ‘βˆžπ‘›=1𝑏𝑛 be convergent real series with positive terms. If limπ‘›β†’βˆžπ‘Žπ‘›+π‘Žπ‘›+1+…𝑏𝑛+𝑏𝑛+1+…=0,thenliminfπ‘›β†’βˆžπ‘Žπ‘›π‘π‘›=0.(2.1)

Proof. By the way of contradiction, we suppose that liminfπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=π‘ž>0, then there exists 𝑛0βˆˆβ„• such that for every 𝑛>𝑛0 we have 0<π‘žβ‹†<π‘Žπ‘›/𝑏𝑛, where 0<π‘žβ‹†<π‘ž. From this follows π‘žβ‹†(𝑏𝑛+𝑏𝑛+1+…)<(π‘Žπ‘›+π‘Žπ‘›+1+…) for 𝑛>𝑛0, which is a contradiction with limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0, similarly for π‘ž=∞.

Lemma 2.2. Let βˆ‘βˆžπ‘›=1π‘Žπ‘›, βˆ‘βˆžπ‘›=1𝑏𝑛 be convergent real series with positive terms. Let limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛) exist. Then limπ‘›β†’βˆžπ‘Žπ‘›π‘π‘›=0ifflimπ‘›β†’βˆžπ‘Žπ‘›+π‘Žπ‘›+1+…𝑏𝑛+𝑏𝑛+1+…=0.(2.2)

The next example shows that under the conditions of Lemma 2.1, for all 0<π‘Ÿβ‰€βˆž, there exist a series βˆ‘βˆžπ‘›=1π‘Žπ‘›,βˆ‘βˆžπ‘›=1𝑏𝑛 such that limsupπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=π‘Ÿ.

Example 2.3. Let {𝛼𝑛;π‘›βˆˆβ„•} be any sequence of real positive numbers which satisfy 𝛼𝑛≀1/𝑛4 for 𝑛β‰₯1. We define the series βˆ‘βˆžπ‘›=1π‘Žπ‘›=π‘Ÿπ›Ό1+𝛼1/12+π‘Ÿπ›Ό2+𝛼2/22+…+π‘Ÿπ›Όπ‘˜+π›Όπ‘˜/π‘˜2+… and βˆ‘βˆžπ‘›=1. Then we have𝑏𝑛 If =𝛼1+12𝛼1+𝛼2, then +22𝛼2+…+

Remark 2.4. It is evident that in general from π›Όπ‘˜+π‘˜2π›Όπ‘˜+… does not follow limπ‘›β†’βˆžπ‘Ž2π‘›βˆ’1+π‘Ž2𝑛+…𝑏2π‘›βˆ’1+𝑏2𝑛+…=limπ‘›β†’βˆžπ‘Ÿξ‚€π›Όπ‘›+𝛼𝑛+1+ξ‚€+…1/𝑛2𝛼𝑛+𝛼𝑛+1+…𝛼𝑛+𝛼𝑛+1+…+𝑛2𝛼𝑛+𝛼𝑛+1+…=0,(2.3)limπ‘›β†’βˆžπ‘Ž2𝑛+π‘Ž2𝑛+1+…𝑏2𝑛+𝑏2𝑛+1+…=limπ‘›β†’βˆžπ‘Ÿξ‚€π›Όπ‘›+1+𝛼𝑛+2+ξ‚€+…1/𝑛2𝛼𝑛+𝛼𝑛+1+…𝛼𝑛+1+𝛼𝑛+2+…+𝑛2𝛼𝑛+𝛼𝑛+1+…=0,(1)limπ‘›β†’βˆžπ‘Ž2π‘›βˆ’1𝑏2π‘›βˆ’1=π‘Ÿ,limπ‘›β†’βˆžπ‘Ž2𝑛𝑏2𝑛=0.(2) For example, if we put βˆ‘βˆžπ‘›=1π‘Žπ‘›=𝛼1+𝛼1/12+2𝛼2+𝛼2/22+…+π‘˜π›Όπ‘˜+π›Όπ‘˜/π‘˜2+…limπ‘›β†’βˆž(π‘Ž2π‘›βˆ’1/𝑏2π‘›βˆ’1)=∞. and limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0liminfπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0., we obtain π‘Ž2𝑛=𝑏2𝑛=1/(𝑛(𝑛+1)), and π‘›βˆˆβ„•, is the set of all cluster points of the sequence π‘Ž2π‘›βˆ’1=βˆ’π‘2π‘›βˆ’1=βˆ’1/(𝑛(𝑛+1)),

In general, the condition π‘›βˆˆβ„• does not imply the condition limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0 as it follows from the next example.

Example 2.5. Let {βˆ’1,1} be a sequence such that {π‘Žπ‘›/𝑏𝑛;π‘›βˆˆβ„•}.limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0
limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0. We define convergent series {𝛼𝑛;π‘›βˆˆβ„•} and 𝛼𝑛=π‘žπ‘›,. From the definition, we obtain π‘›βˆˆβ„•, It is obvious that 0<π‘ž<1/2 and βˆ‘βˆžπ‘›=1π‘Žπ‘›=𝛼1+𝛼1+𝛼2/22+𝛼2/22+…+π›Όπ‘˜/π‘˜2+π›Όπ‘˜/π‘˜2+… From βˆ‘βˆžπ‘›=1𝑏𝑛=𝛼1βˆ’π›Ό1/2+𝛼2/3βˆ’π›Ό2/4+…+π›Όπ‘˜/(2π‘˜βˆ’1)βˆ’π›Όπ‘˜/2π‘˜+…𝑏2𝑛+𝑏2𝑛+1+…=βˆ’π›Όπ‘›+𝛼2𝑛𝑛+1+𝛼2𝑛+1(2𝑛+2𝑛+2<12𝑛+32𝑛+4+…2π‘›βˆ’π›Ό+𝛼𝑛+1+𝛼𝑛+2=1+…2π‘›βˆ’π‘žπ‘›+π‘žπ‘›+1+π‘žπ‘›+2ξ€Έ=π‘ž+…𝑛2π‘žβˆ’12𝑛1βˆ’π‘ž<0.(2.4) we have𝑏2𝑛+1+𝑏2𝑛+2+…>0Thus limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0.

Lemma 2.6. Let (2(π‘˜+π‘š)βˆ’1)(2(π‘˜+π‘š))>(π‘˜+π‘š)2,, π‘˜,π‘šβˆˆβ„• be convergent real series with nonzero terms. Let π‘Ž2π‘˜βˆ’1+π‘Ž2π‘˜+…𝑏2π‘˜βˆ’1+𝑏2π‘˜=2𝛼+β€¦π‘˜/π‘˜2+π›Όπ‘˜+1/(π‘˜+1)2+β€¦π›Όπ‘˜/(2π‘˜(2π‘˜βˆ’1))+π›Όπ‘˜+1/(2π‘˜+1)(2π‘˜+2)+…>2forπ‘˜β‰₯1.(2.5) for all limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)β‰ 0.. Let βˆ‘βˆžπ‘›=1π‘Žπ‘›βˆ‘βˆžπ‘›=1𝑏𝑛𝑏𝑛+𝑏𝑛+1+…≠0π‘›βˆˆβ„• then (1)𝑙𝑖(π‘Ž)=liminfπ‘›β†’βˆž|1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+…|,(2)𝑙𝑠(π‘Ž)=limsupπ‘›β†’βˆž|1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+…|,(3)𝑙𝑖(𝑏)=liminfπ‘›β†’βˆž if and only if |1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|,

Proof. For every 𝑙𝑠(𝑏)=limsupπ‘›β†’βˆž|1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|,, we haveif𝑙𝑠(π‘Ž)<∞,𝑙𝑖(𝑏)>0,limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0,thenlimπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+From this follows our assertion.

Remark 2.7. The condition …)=0, can be satisfied, for example, if ifπ‘Žπ‘›+π‘Žπ‘›+1+…≠0forallπ‘›βˆˆβ„•,𝑙𝑖(π‘Ž)>0,𝑙𝑠(𝑏)<∞,limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+ In fact, if 𝑏𝑛+1+…)=0,thenlimπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0, then there exists ifπ‘Žπ‘›+π‘Žπ‘›+1+…≠0forallπ‘›βˆˆβ„•,0<𝑙𝑖(π‘Ž),𝑙𝑠(π‘Ž)<∞,0<𝑙𝑖(𝑏),𝑙𝑠(𝑏)<∞, such that for every thenlimπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0, we havelimπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0.and thus π‘›βˆˆβ„• The condition |||π‘Žπ‘›+π‘Žπ‘›+1+…𝑏𝑛+𝑏𝑛+1|||=|||+…1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›|||+…|||𝑏𝑛/π‘Žπ‘›+𝑏𝑛+1/π‘Žπ‘›+𝑏𝑛+2/π‘Žπ‘›|||=|||+…1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›|||+…|||𝑏𝑛/π‘Žπ‘›||||||1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛|||=|||π‘Ž+…𝑛/𝑏𝑛||||||1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+π‘Žπ‘›+3/π‘Žπ‘›|||+…|||1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+𝑏𝑛+3/𝑏𝑛|||.+…(2.6) can be satisfied, for example, if liminfπ‘›β†’βˆž|1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|>0 Indeed, if limsupπ‘›β†’βˆž|𝑏𝑛+1/𝑏𝑛|<1/2. then there exists limsupπ‘›β†’βˆž|𝑏𝑛+1/𝑏𝑛|<π‘Ÿ<1/2. such that for every 𝑛0βˆˆβ„•, we have𝑛>𝑛0Conversely, from the condition |||𝑏𝑛+1𝑏𝑛+𝑏𝑛+2𝑏𝑛+𝑏𝑛+3𝑏𝑛|||≀|||𝑏+…𝑛+1𝑏𝑛|||+|||𝑏𝑛+2𝑏𝑛+1||||||𝑏𝑛+1𝑏𝑛|||+|||𝑏𝑛+3𝑏𝑛+2||||||𝑏𝑛+2𝑏𝑛+1||||||𝑏𝑛+1𝑏𝑛|||+β€¦β‰€π‘Ÿ+π‘Ÿ2+π‘Ÿ3π‘Ÿ+…=,1βˆ’π‘Ÿ(2.7) need not follow the condition |1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|β‰₯(1βˆ’2π‘Ÿ)/(1βˆ’π‘Ÿ)>0. For example, if we put limsupπ‘›β†’βˆž|1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+…|<∞, limsupπ‘›β†’βˆž|π‘Žπ‘›+1/π‘Žπ‘›|<1., limsupπ‘›β†’βˆž|π‘Žπ‘›+1/π‘Žπ‘›|=𝛼<1,, 𝑛0βˆˆβ„• then 𝑛>𝑛0 is convergent series and |||π‘Ž1+𝑛+1π‘Žπ‘›+π‘Žπ‘›+2π‘Žπ‘›|||=|||π‘Ž+…1+𝑛+1π‘Žπ‘›+π‘Žπ‘›+2π‘Žπ‘›+1π‘Žπ‘›+1π‘Žπ‘›+π‘Žπ‘›+3π‘Žπ‘›+2π‘Žπ‘›+2π‘Žπ‘›+1π‘Žπ‘›+1π‘Žπ‘›|||+…≀1+𝛽+𝛽2+𝛽31+…=1βˆ’π›½<∞,where𝛼<𝛽<1.(2.8), liminfπ‘›β†’βˆž|1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|>0

3. limsupπ‘›β†’βˆž|(𝑏𝑛+1/𝑏𝑛)|<1/2.-Convergent Series

Definition 3.1 (See [10]). We say that a sequence π‘Ž1β‰ 0 has π‘Ž2𝑛=1/2𝑛-limit a real number π‘Ž2𝑛+1=βˆ’1/2𝑛 and we write 𝑛=1,2,…,-βˆ‘βˆžπ‘›=1π‘Žπ‘›, if for each limsupπ‘›β†’βˆž|π‘Žπ‘›+1/π‘Žπ‘›|=1 the set limsupπ‘›β†’βˆž|1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+…|=1. belongs to the ideal 𝜏, where {π‘Žπ‘›;π‘›βˆˆβ„•} is an admissible ideal of subsets of 𝜏 which is additive (if 𝐿, then 𝜏), hereditary (if limπ‘›β†’βˆžπ‘Žπ‘›=𝐿, then πœ€>0), containing all singletons and not containing 𝐴(πœ€)={𝑛;|π‘Žπ‘›βˆ’πΏ|β‰₯πœ€}.

We denote by 𝜏 the ideal of all finite subsets of 𝜏.

Definition 3.2 (See [10]). We say that ℕ𝐴,𝐡∈𝜏-converges to a real number 𝐴βˆͺ𝐡∈𝜏 and we write π΅βŠ‚π΄βˆˆπœ-𝐡∈𝜏 if for each β„• the set πœπ‘“ belongs to the ideal β„•, where βˆ‘βˆžπ‘›=1π‘Žπ‘› is an admissible ideal of subsets of 𝜏.

Definition 3.3. Let 𝐿, 𝜏 be βˆ‘βˆžπ‘›=1π‘Žπ‘›=𝐿-convergent real series with nonzero terms such that πœ€>0βˆ‘π΄(πœ€)={𝑛;|π‘›π‘˜=1π‘Žπ‘˜βˆ’πΏ|β‰₯πœ€}. A series 𝜏 is called 𝜏-faster convergent than β„• if βˆ‘βˆžπ‘›=1π‘Žπ‘›

Definition 3.4 (See [9]). Let βˆ‘βˆžπ‘›=1𝑏𝑛 be an admissible ideal of subsets of 𝜏. A number 𝑏𝑛+𝑏𝑛+1+…≠0, is said to be a π‘›βˆˆβ„•-cluster point of βˆ‘βˆžπ‘›=1π‘Žπ‘› if for each 𝜏 the set βˆ‘βˆžπ‘›=1𝑏𝑛 is not from 𝜏-limπ‘›β†’βˆž(π‘Žπ‘›+1+π‘Žπ‘›+2+…)/(𝑏𝑛+1+𝑏𝑛+2+…)=0.

Remark 3.5. Of course, if 𝜏 is an admissible ideal of subsets of β„•, by π‘₯βˆˆπ‘…-cluster point of a real sequence 𝜏, we mean a number βˆ‘βˆžπ‘›=1π‘₯𝑛, where for each πœ€>0 the set βˆ‘{π‘›βˆˆβ„•;|π‘›π‘˜=1π‘₯π‘˜βˆ’π‘₯|<πœ€} is not from 𝜏. Moreover, we say that 𝜏 (β„•) is the 𝜏-cluster point of a real sequence {π‘₯𝑛;π‘›βˆˆβ„•} if for each π‘₯βˆˆβ„ (πœ€>0) the set {π‘›βˆˆβ„•;|π‘₯π‘›βˆ’π‘₯|<πœ€} (𝜏.) is not from ∞.

Remark 3.6. If βˆ’βˆž is a real sequence, 𝜏 is an admissible ideal, and {π‘₯𝑛;π‘›βˆˆβ„•}, then 𝑐>0, Indeed, if 𝑐<0 is bounded, then by [8] there exists a {π‘›βˆˆβ„•;π‘₯𝑛>𝑐}-cluster point of {π‘›βˆˆβ„•;π‘₯𝑛<𝑐} If 𝜏 is not bounded, then either {π‘₯𝑛;π‘›βˆˆβ„•} or 𝜏 is 𝑋={π‘₯;π‘₯isa𝜏-clusterpointof{π‘₯𝑛;π‘›βˆˆβ„•}}-cluster point of π‘‹β‰ βˆ…. according to Remark 3.5 or there exists {π‘₯𝑛;π‘›βˆˆβ„•} such that 𝜏 If for some {π‘₯𝑛;π‘›βˆˆβ„•}.{π‘₯𝑛;π‘›βˆˆβ„•}, then +∞ Consider the ideal βˆ’βˆž Because 𝜏 is a bounded set, there exists {π‘₯𝑛;π‘›βˆˆβ„•}π‘™βˆˆβ„ such that {π‘›βˆˆβ„•;|π‘₯𝑛|>𝑙}∈𝜏. is a π‘™βˆˆβ„-cluster point of {π‘›βˆˆβ„•;|π‘₯𝑛|>𝑙}∈𝜏 Let 𝐾𝑙={π‘›βˆˆβ„•;|π‘₯𝑛|≀𝑙}βˆ‰πœ.. Since 𝜐={πΎπ‘™βˆ©π΄;𝐴∈𝜏}. is a {π‘₯𝑛;π‘›βˆˆπΎπ‘™}-cluster point of π‘₯β‹†βˆˆβ„,, then the set |π‘₯⋆|≀𝑙 and then also is not from π‘₯⋆. Since 𝜐 has a hereditary property, then {π‘₯𝑛;π‘›βˆˆπΎπ‘™}.. So πœ€>0 is a cluster point of π‘₯⋆

Definition 3.7. Let 𝜐 be an admissible ideal of subsets of {π‘₯𝑛;π‘›βˆˆπΎπ‘™}. Let {π‘›βˆˆπΎπ‘™;|π‘₯π‘›βˆ’π‘₯⋆|<πœ€}βˆ‰πœ be an infinite series of real numbers and let 𝜏 If 𝜏 is bounded, then {π‘›βˆˆβ„•;|π‘₯π‘›βˆ’π‘₯⋆|<πœ€}βˆ‰πœ (π‘₯⋆) is said to be a {π‘₯𝑛;π‘›βˆˆβ„•}.-𝜏 (β„•-βˆ‘βˆžπ‘›=1π‘₯𝑛). If βˆ‘π‘‹={π‘₯βˆˆβ„;π‘₯isa𝜏-clusterpointofβˆžπ‘›=1π‘₯𝑛}. or 𝑋 is 𝑠=sup𝑋-cluster point (𝑠=inf𝑋 or 𝜏 is limsupπ‘›β†’βˆžβˆ‘βˆžπ‘›=1π‘₯𝑛-cluster point), then 𝜏-liminfπ‘›β†’βˆžβˆ‘βˆžπ‘›=1π‘₯𝑛 (sup𝑋=∞-∞).

Definition 3.8. We say that a sequence 𝜏 is inf𝑋=βˆ’βˆž-bounded above (βˆ’βˆž-bounded bellow), if there exist 𝜏 such that 𝜏 (limsupπ‘›β†’βˆžβˆ‘βˆžπ‘›=1π‘₯𝑛=∞) and is 𝜏-bounded if it is liminfπ‘›β†’βˆžβˆ‘βˆžπ‘›=1π‘₯𝑛=βˆ’βˆž-bounded above and below simultaneously.

It is obvious that if {π‘₯𝑛;π‘›βˆˆβ„} is faster convergent than 𝜏, then 𝜏 is π‘šβˆˆβ„-faster convergent, the {π‘›βˆˆβ„•;π‘₯𝑛>π‘š}∈𝜏. Generally, from the fact that {π‘›βˆˆβ„•;π‘₯𝑛<π‘š}∈𝜏 is 𝜏-faster convergent, 𝜏 does not hold that βˆ‘βˆžπ‘›=1π‘Žπ‘› is faster convergent than βˆ‘βˆžπ‘›=1𝑏𝑛.

It is obvious that for βˆ‘βˆžπ‘›=1π‘Žπ‘›-convergent series where 𝜏 has the property βˆ‘βˆžπ‘›=1𝑏𝑛:βˆ‘βˆžπ‘›=1π‘Žπ‘›(𝜏 or βˆ‘βˆžπ‘›=1𝑏𝑛 asymptotic density βˆ‘βˆžπ‘›=1π‘Žπ‘› have βˆ‘βˆžπ‘›=1𝑏𝑛), we obtain similar lemma as Lemma 2.6.

Lemma 3.9. Let 𝜏 be an admissible ideal of subsets of 𝜏 with property p1. Let ξ€½ξ€Ύξ€½ξ€Ύifπ‘€βˆˆπœ,then𝑀+1=𝑛+1;π‘›βˆˆπ‘€βˆ©π‘βˆˆπœ,π‘€βˆ’1=π‘›βˆ’1>0;π‘›βˆˆπ‘€βˆ©π‘βˆˆπœ(3.1), πœπ‘“ be πœπ‘ π‘‘={π΄βŠ‚π‘;-convergent real series with nonzero terms. Let (𝐴)=0} for all p1. Let
𝜏 Then (1)β„•(2)p1(3)βˆ‘βˆžπ‘›=1π‘Žπ‘›

Proof. First, we note that if βˆ‘βˆžπ‘›=1𝑏𝑛, then sequence 𝜏 is 𝑏𝑛+𝑏𝑛+1+…≠0,-bounded above (similarly for π‘›βˆˆβ„•). Next, we show that if 𝑑𝑖(π‘Ž)=𝜏-liminfπ‘›β†’βˆž|||π‘Ž1+𝑛+1π‘Žπ‘›+π‘Žπ‘›+2π‘Žπ‘›|||+…,𝑑𝑠(π‘Ž)=𝜏-limsupπ‘›β†’βˆž|||π‘Ž1+𝑛+1π‘Žπ‘›+π‘Žπ‘›+2π‘Žπ‘›|||,𝑑+…𝑖(𝑏)=𝜏-liminfπ‘›β†’βˆž|||𝑏1+𝑛+1𝑏𝑛+𝑏𝑛+2𝑏𝑛|||+…,𝑑𝑠(𝑏)=𝜏-limsupπ‘›β†’βˆž|||𝑏1+𝑛+1𝑏𝑛+𝑏𝑛+2𝑏𝑛|||.+…(3.2) is a if𝑑𝑠(π‘Ž)<∞,𝑑𝑖(𝑏)>0,𝜏-limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0,then𝜏-limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+-convergent sequence to 0 and …)=0, is a ifπ‘Žπ‘›+π‘Žπ‘›+1+…≠0forallπ‘›βˆˆβ„•,𝑑𝑖(π‘Ž)>0,𝑑𝑠(𝑏)<∞,𝜏-limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+-bounded sequence, then 𝑏𝑛+1+…)=0,then𝜏-limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0, is a ifπ‘Žπ‘›+π‘Žπ‘›+1+…≠0forallπ‘›βˆˆβ„•,0<𝑑𝑖(π‘Ž),𝑑𝑠(π‘Ž)<∞,0<𝑑𝑖(𝑏),𝑑𝑠(𝑏)<∞,then-convergent sequence to 0. There exist 𝜏-limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0,ifandonlyif𝜏-limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0. such that the set 𝜏-limsupπ‘›β†’βˆžπ‘₯𝑛<∞ is from {π‘₯𝑛;π‘›βˆˆβ„•}. Let 𝜏 The set 𝜏-liminf is from {π‘Žπ‘›;π‘›βˆˆβ„•}. If 𝜏, then {𝑏𝑛;π‘›βˆˆβ„•} and 𝜏 and so {π‘Žπ‘›π‘π‘›βˆΆπ‘›βˆˆβ„•}. From this and from properties of ideal 𝜏, follows that π‘˜βˆˆβ„π‘π‘={𝑛;|𝑏𝑛|β‰₯π‘˜}-converges to 0. Then the proof follows from Lemma 2.6.

The following examples show that we cannot replace lim by 𝜏-lim in Lemmas 1.2, 2.1, and 2.2.

Example 3.10. Let πœ€>0. be a convergent series with positive terms such that π‘π‘Ž(πœ€)={𝑛;|π‘Žπ‘›|β‰₯πœ€/π‘˜} is convergent (e.g., 𝜏, π‘›βˆˆβ„•β§΅(π‘π‘Ž(πœ€)βˆͺ𝑁𝑏)). Let |π‘Žπ‘›|<πœ€/𝐾, |𝑏𝑛|<π‘˜ be an infinite subset of |π‘Žπ‘›π‘π‘›|<πœ€, where 𝜏 is an arbitrary admissible ideal with property {π‘Žπ‘›π‘π‘›βˆΆπ‘›βˆˆβ„•} different from 𝜏. We define a real series 𝜏 in the following way:βˆ‘βˆžπ‘›=1𝑏𝑛where βˆ‘βˆžπ‘›=1(𝑏𝑛+𝑏𝑛+1+𝑏𝑛+2+…) be a real number such that βˆ‘βˆžπ‘›=1𝑏𝑛=βˆ‘βˆžπ‘›=1π›Όπ‘›βˆ’1. We obtain 0<𝛼<1, 𝑀={𝑖𝑗;1<𝑖𝑗<𝑖𝑗+1,π‘—βˆˆβ„•} for all π‘€βˆˆπœ.

Example 3.11. Let β„•, 𝜏 be an infinite subset of p1, where πœπ‘“ is an arbitrary admissible ideal with property βˆ‘βˆžπ‘›=1π‘Žπ‘› different from π‘Žπ‘›=⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩1𝑛𝑏𝑛,𝑛>1,𝑛≠𝑖𝑗,π‘–π‘—π‘βˆˆπ‘€,𝑗=2,3,β€¦π‘–π‘—βˆ’1+π‘π‘–π‘—βˆ’1+1𝑖+β€¦π‘›βˆˆπ‘€β§΅1ξ€Ύ,𝑐,𝑛=1,(3.3). Let 𝑐 be a sequence of positive real numbers such that βˆ‘βˆžπ‘›=1π‘Žπ‘›=βˆ‘βˆžπ‘›=1π‘π‘›πœ-limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=0 where (π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)>1. Put 𝑛β‰₯𝑖2𝑀={𝑛𝑗;𝑛1=1,𝑛𝑗<𝑛𝑗+1,𝑛𝑗+1βˆ’π‘›π‘—β‰₯2,π‘—βˆˆβ„•}. Let π‘€βˆˆπœβ„• for 𝜏 be defined as follows: if p1, where πœπ‘“ we put {𝐡𝑛𝑗}βˆžπ‘—=1𝐡𝑛𝑗+1<𝐡𝑛𝑗<π‘šπ΅π‘›π‘—+1,limπ‘—β†’βˆžπ΅π‘›π‘—=0, For π‘š>1, we have π΄π‘˜=π΅π‘˜/2π‘˜,, where π‘˜βˆˆπ‘€ From this and from the definition π΄π‘˜,π΅π‘˜, it follows π‘˜βˆ‰π‘€ hence 𝑛𝑗<π‘˜<𝑛𝑗+1-π‘—βˆˆβ„• It is obvious that πœ€π‘›π‘—=(π΄π‘›π‘—βˆ’π΄π‘›π‘—+1)/(𝑛𝑗+1βˆ’π‘›π‘—), for π΄π‘˜=π΄π‘›π‘—βˆ’(π‘˜βˆ’π‘›π‘—)πœ€π‘›π‘—,π΅π‘˜=π΅π‘›π‘—βˆ’(π‘˜βˆ’π‘›π‘—)πœ€π‘›π‘—. Let π‘˜βˆ‰π‘€ and π΄π‘˜/π΅π‘˜<𝐴𝑛𝑗/𝐡𝑛𝑗+1=𝐡𝑛𝑗/2𝑛𝑗𝐡𝑛𝑗+1<π‘š/2𝑛𝑗 be real numbers. Put 𝑛𝑗<π‘˜<𝑛𝑗+1.π΄π‘˜,π‘˜βˆˆπ‘€ The series limπ‘˜β†’βˆž(π΄π‘˜/π΅π‘˜)=0,𝜏 are convergent with positive terms and limπ‘˜β†’βˆž(π΄π‘˜/π΅π‘˜)=0.-(π΄π‘˜βˆ’π΄π‘˜+1)/(π΅π‘˜βˆ’π΅π‘˜+1)=1π‘˜β‰ π‘›π‘—βˆ’1,-𝑗>1.

Remark 3.12. If 𝐴0>𝐴1 have not the property 𝐡0>𝐡1, we get similar lemma as Lemma 3.9, but with shift indices of given series. (In general, it does not hold that if π‘Žπ‘›=π΄π‘›βˆ’1βˆ’π΄π‘›,-𝑏𝑛=π΅π‘›βˆ’1βˆ’π΅π‘›,, then π‘›βˆˆβ„•.-βˆ‘βˆžπ‘›=1π‘Žπ‘›,, and so on.)

4. Kummer Series

In [7], is showed: if βˆ‘βˆžπ‘›=1𝑏𝑛 is a convergent real series with positive terms and with an unknown sum 𝜏 and limπ‘›β†’βˆž(π‘Žπ‘›+π‘Žπ‘›+1+…)/(𝑏𝑛+𝑏𝑛+1+…)=0, is a convergent real series with positive terms and with a known sum 𝜏, then if limπ‘›β†’βˆž(π‘Žπ‘›/𝑏𝑛)=1. the Kummer series 𝜏, where p1 and 𝜏 for limπ‘›β†’βˆžπ‘Žπ‘›=π‘Ž, has the same sum as 𝜏 and if limπ‘›β†’βˆžπ‘Žπ‘›+1=π‘Ž is a faster convergent series then βˆ‘βˆžπ‘›=1π‘Žπ‘›.

In the following lemma, we prove by using Lemma 2.6 the faster convergence of the Kummer series π‘Ž to the unknown sum of βˆ‘βˆžπ‘›=1𝑐𝑛 without conditions of positivity of 𝑐 and terms of limπ‘›β†’βˆž(π‘Žπ‘›/𝑐𝑛)=𝑝>0βˆ‘βˆžπ‘›=1𝑏𝑛𝑏1=π‘Ž1+𝑝(π‘βˆ’π‘1)

Lemma 4.1. Let 𝑏𝑛=π‘Žπ‘›βˆ’π‘π‘π‘› be a convergent real series with nonzero terms and with the sum 𝑛β‰₯2. Let βˆ‘βˆžπ‘›=1π‘Žπ‘› Let 𝑏𝑛>0 for all βˆ‘βˆžπ‘›=1π‘Žπ‘›. Let βˆ‘βˆžπ‘›=1𝑏𝑛 be a convergent series with nonzero terms and with the sum βˆ‘βˆžπ‘›=1π‘Žπ‘›. Let 𝑝. If for the series βˆ‘βˆžπ‘›=1π‘Žπ‘›,, where βˆ‘βˆžπ‘›=1𝑏𝑛, and βˆ‘βˆžπ‘›=1𝑐𝑛., for βˆ‘βˆžπ‘›=1π‘Žπ‘›, is π‘Ž, for liminfπ‘›β†’βˆž|1+π‘Žπ‘›+1/π‘Žπ‘›+π‘Žπ‘›+2/π‘Žπ‘›+…|>0., and π‘Žπ‘›+π‘Žπ‘›+1+…≠0, thenπ‘›βˆˆβ„• and βˆ‘βˆžπ‘›=1𝑐𝑛 is a faster convergent series than 𝑐.

Proof. Since limπ‘›β†’βˆžπ‘Žπ‘›/𝑐𝑛=𝑝≠0, the proof follows from Lemma 2.6.

In the next example, we construct, by using of Remark 2.7 and Lemma 4.1, the Kummer series βˆ‘βˆžπ‘›=1𝑏𝑛 faster convergent than the series 𝑏1=π‘Ž1+𝑝(π‘βˆ’π‘1) such that series 𝑏𝑛=π‘Žπ‘›βˆ’π‘π‘π‘›π‘›β‰₯2𝑏𝑛≠0 does not have positive terms.

Example 4.2. Let 𝑛β‰₯2 (the sum is unknown). It is evident that limsupπ‘›β†’βˆž|1+𝑏𝑛+1/𝑏𝑛+𝑏𝑛+2/𝑏𝑛+…|<∞ Let βˆ‘βˆžπ‘›=1𝑏𝑛=π‘Ž, then βˆ‘βˆžπ‘›=1𝑏𝑛 and from βˆ‘βˆžπ‘›=1π‘Žπ‘›, limπ‘›β†’βˆž(𝑏𝑛/π‘Žπ‘›)=0, it follows βˆ‘βˆžπ‘›=1𝑏𝑛 (the sum is known). The Kummer series is βˆ‘βˆžπ‘›=1π‘Žπ‘› where βˆ‘βˆžπ‘›=1π‘Žπ‘›,, βˆ‘βˆžπ‘›=1𝑐𝑛,. It is obvious that βˆ‘βˆžπ‘›=1𝑏𝑛 Because βˆ‘βˆžπ‘›=1π‘Žπ‘›=βˆ‘βˆžπ‘›=1(βˆ’1)𝑛/(4𝑛(3𝑛2+βˆšπ‘›)), is series with alternating signs such that for all limsupπ‘›β†’βˆž|π‘Žπ‘›+1/π‘Žπ‘›|=1/4<1/2. we have that βˆ‘βˆžπ‘›=1𝑐𝑛=βˆ‘βˆžπ‘›=1(βˆ’1)𝑛/(4𝑛𝑛2), we get for limπ‘›β†’βˆžπ‘Žπ‘›/𝑐𝑛=1/3β€‰βˆ‘βˆžπ‘›=1(π‘₯𝑛/𝑛2∫)=βˆ’π‘₯0(ln(1βˆ’π‘‘)/𝑑)𝑑𝑑π‘₯∈(βˆ’1,1) Hence βˆ‘βˆžπ‘›=1(βˆ’1)𝑛/(4𝑛𝑛2∫)=0βˆ’1/4(ln(1βˆ’π‘‘)/𝑑)𝑑𝑑 is a faster convergent series than βˆ‘βˆžπ‘›=1𝑏𝑛=𝑏1+βˆ‘βˆžπ‘›=2(π‘Žπ‘›βˆ’(1/3)𝑐𝑛), and it has the same sum.