Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2009, Article ID 626489, 22 pages
http://dx.doi.org/10.1155/2009/626489
Research Article

On Rational Approximations to Euler's Constant 𝛾 and to 𝛾 + l o g ( π‘Ž / 𝑏 )

Fachhochschule für die Wirtschaft Hannover, Freundallee 15, 30173 Hannover, Germany

Received 4 December 2008; Accepted 13 April 2009

Academic Editor: Stéphane Louboutin

Copyright © 2009 Carsten Elsner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Elsner, β€œOn a sequence transformation with integral coefficients for Euler's constant,” Proceedings of the American Mathematical Society, vol. 123, no. 5, pp. 1537–1541, 1995. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  2. T. Rivoal, β€œPolynômes de type Legendre et approximations de la constante d'Euler,” notes, 2005, http://www-fourier.ujf-grenoble.fr/~rivoal/articles/euler.pdf.
  3. K. H. Pilehrood and T. H. Pilehrood, β€œArithmetical properties of some series with logarithmic coefficients,” Mathematische Zeitschrift, vol. 255, no. 1, pp. 117–131, 2007. View at Publisher Β· View at Google Scholar Β· View at MathSciNet
  4. C. Elsner, β€œOn a sequence transformation with integral coefficients for Euler's constant. II,” Journal of Number Theory, vol. 124, no. 2, pp. 442–453, 2007. View at Publisher Β· View at Google Scholar Β· View at MathSciNet
  5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, UK, 1984.
  6. A. I. Aptekarev, Ed., Rational Approximation of Euler's Constant and Recurrence Relations, A. I. Aptekarev, Ed., Sovremennye Problemy Matematiki, Vol. 9, MIAN (Steklov Institute), Moscow, Russia, 2007. View at Zentralblatt MATH
  7. T. Rivoal, β€œRational approximations for values of derivatives of the Gamma function,” http://www-fourier.ujf-grenoble.fr/~rivoal/articles/eulerconstant.pdf.
  8. D. E. Knuth, β€œEuler's constant to 1271 places,” Mathematics of Computation, vol. 16, no. 79, pp. 275–281, 1962. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  9. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1970.