Abstract

We introduce a class of noncommutative and noncocommutative weak Hopf algebras with infinite Ext quivers and study their structure. We decompose them into a direct sum of two algebras. The coalgebra structures of these weak Hopf algebras are described by their Ext quiver. The weak Hopf extension of Hopf algebra ๐ป๐‘› has a quotient Hopf algebra and a sub-Hopf algebra which are isomorphic to ๐ป๐‘›.

1. Introduction

Weak Hopf algebra was introduced by Li in 1998 as a generalization of Hopf algebras [1]. It had been proved in [1, 2]; for some sorts of finite dimensional weak Hopf algebras ๐ป, the quantum quasidouble ๐ท(๐ป) of ๐ป is quasibraided equipped with some quasi-R-matrix ๐‘…. Hence ๐‘… is a solution of the Quantum Yang-Baxter Equation.

First two examples of noncommutative and noncocommutative weak Hopf algebras were given in [3]. Up to now, many examples of weak Hopf algebras have been found [2, 4โ€“7]. So far, all examples of weak Hopf algebras were based on some Hopf algebras and were constructed by weak extension.

In this paper, we first give a Hopf algebra, denoted by ๐ป๐‘›. By weak extension, we construct a weak Hopf algebra ๐‘Š(๐‘›1,๐‘›2,๐‘›3) corresponding to ๐ป๐‘› and study their structure. ๐‘Š(๐‘›1,๐‘›2,๐‘›3) has a quotient Hopf algebra and a sub-Hopf algebra which are isomorphic to ๐ป๐‘›. And as an algebra, ๐‘Š(๐‘›1,๐‘›2,๐‘›3) can be decomposed into a direct sum of two algebras, one of which is ๐ป๐‘›. The coalgebra structures of these weak Hopf algebras are described by their Ext quiver [8, 9].

We organize our paper as follows. In Section 2, we introduce the Hopf algebra ๐ป๐‘›. In Section 3, we define a class of weak Hopf algebras ๐‘Š(๐‘›1,๐‘›2,๐‘›3). In Section 4, we study the structure of ๐‘Š(๐‘›1,๐‘›2,๐‘›3) and decompose ๐‘Š(๐‘›1,๐‘›2,๐‘›3) into a direct sum of ๐ป๐‘› and some algebra of polynomials as an algebra. We give the Ext-quiver of coalgebra of ๐‘Š(๐‘›1,๐‘›2,๐‘›3) and prove that ๐‘Š(๐‘›1,๐‘›2,๐‘›3) has a quotient Hopf algebra and a sub-Hopf algebra which are isomorphic to ๐ป๐‘›.

2. A Quiver Hopf Algebra

The Hopf Algebra ๐น(๐‘ž) is defined in [10]. Let ๐‘žโˆˆ๐‘˜โงต0. As a ๐‘˜-algebra ๐น(๐‘ž) is generated by ๐‘Ž,๐‘, and ๐‘ฅ subject to the relations

๐‘Ž๐‘=1,๐‘๐‘Ž=1,๐‘ฅ๐‘Ž=๐‘ž๐‘Ž๐‘ฅ,๐‘ฅ๐‘=๐‘žโˆ’1๐‘๐‘ฅ.(2.1) The coalgebra structure of ๐น(๐‘ž) is determined by

๐œ€ฮ”(๐‘Ž)=๐‘ŽโŠ—๐‘Ž,ฮ”(๐‘)=๐‘โŠ—๐‘,ฮ”(๐‘ฅ)=๐‘ฅโŠ—๐‘Ž+1โŠ—๐‘ฅ.(1)=๐œ€(๐‘Ž)=๐œ€(๐‘)=1,๐œ€(๐‘ฅ)=0.(2.2)

We generalize ๐น(๐‘ž) to ๐ป๐‘›, which is defined as follows. Let ๐‘˜ be a field, ๐‘žโˆˆ๐‘˜โงต0, ๐‘–=1,2,โ€ฆ,๐‘›. As a ๐‘˜-algebra ๐ป๐‘› is generated by ๐พ,๐พโˆ’1, and ๐‘‹๐‘–,๐‘–=1,2,โ€ฆ,๐‘› subject to the relations

๐พ๐พโˆ’1=1,๐พโˆ’1๐พ=1,๐‘‹๐‘–๐พ=๐‘ž๐พ๐‘‹๐‘–,๐‘‹๐‘–๐พโˆ’1=๐‘žโˆ’1๐พโˆ’1๐‘‹๐‘–.(2.3) The coalgebra structure of ๐ป๐‘› is determined by

๎€ท๐พฮ”(๐พ)=๐พโŠ—๐พ,ฮ”โˆ’1๎€ธ=๐พโˆ’1โŠ—๐พโˆ’1,ฮ”๎€ท๐‘‹๐‘–๎€ธ=๐‘‹๐‘–โŠ—๐พ+1โŠ—๐‘‹๐‘–,๎€ท๐พ๐œ€(๐พ)=๐œ€โˆ’1๎€ธ๎€ท๐‘‹=1,๐œ€๐‘–๎€ธ=0.(2.4) The antipode ๐‘† is induced by

๐‘†(๐พ)=๐พโˆ’1๎€ท๐พ,๐‘†โˆ’1๎€ธ๎€ท๐‘‹=๐พ,๐‘†๐‘–๎€ธ=โˆ’๐พโˆ’1๐‘‹๐‘–.(2.5)

3. A Class of Weak Hopf Algebras

In this section, we construct a class of weak Hopf algebra corresponding to ๐ป๐‘›.

First recall the definition of weak Hopf algebra [1].

Definition 3.1. A ๐‘˜-bialgebra ๐ป=(๐ป,๐œ‡,๐œ‚,ฮ”,๐œ€) is called a weak Hopf algebra if there exists ๐‘‡โˆˆHom๐‘˜(๐ป,๐ป) such that ๐‘–๐‘‘โˆ—๐‘‡โˆ—๐‘–๐‘‘=๐‘–๐‘‘ and ๐‘‡โˆ—๐‘–๐‘‘โˆ—๐‘‡=๐‘‡ where ๐‘‡ is called a weak antipode of ๐ป.

A weak Hopf algebra is called pointed if it is pointed as a coalgebra. If a weak Hopf algebra ๐ป is pointed, then the set of all group-like elements ๐บ(๐ป) is a regular monoid [6].

Now we construct weak Hopf algebra ๐‘Š corresponding to ๐ป๐‘›. The set ๐บ(๐‘Š) of group-like elements of weak Hopf algebra ๐‘Š is a regular monoid which has generators ๐‘”, ๐‘”, 1, subject to ๐‘”๐‘”=๐‘”๐‘”,๐‘”2๐‘”=๐‘”,๐‘”2๐‘”=๐‘”.

To construct all possible weak extension we need the following discussion.

Recall, for any coalgebra ๐ถ, that the group-like elements in ๐ถ are the set ๐บ(๐ถ)={๐‘Žโˆˆ๐ถโˆฃ๐‘Žโ‰ 0andฮ”(๐‘Ž)=๐‘ŽโŠ—๐‘Ž}; necessarily ๐œ€(๐‘Ž)=1 for ๐‘Žโˆˆ๐บ(๐ถ). Note that a simple subcoalgebra ๐ท of ๐ถ is one-dimensional โ‡”๐ท=๐‘˜๐‘Ž for some ๐‘Žโˆˆ๐บ(๐ถ). A coalgebra is pointed if all of its simple subcoalgebras are one-dimensional. For ๐‘Ž,๐‘โˆˆ๐บ(๐ถ), the ๐‘Ž,๐‘-primitive elements in ๐ถ are the set ๐‘ƒ๐‘Ž,๐‘(๐ถ)={๐‘โˆˆ๐ถโˆฃฮ”(๐‘)=๐‘โŠ—๐‘Ž+๐‘โŠ—๐‘}; necessarily ๐œ€(๐‘)=0 for ๐‘โˆˆ๐‘ƒ๐‘Ž,๐‘(๐ถ). Note that ๐‘˜(๐‘Žโˆ’๐‘)={๐‘™(๐‘Žโˆ’๐‘)โˆฃ๐‘™โˆˆ๐‘˜}โŠ‚๐‘ƒ๐‘Ž,๐‘(๐ถ); an ๐‘Ž,๐‘-primitive element ๐‘ is nontrivial if ๐‘โˆ‰๐‘˜(๐‘Žโˆ’๐‘)={๐‘™(๐‘Žโˆ’๐‘)โˆฃ๐‘™โˆˆ๐‘˜}. If ๐‘Ž=๐‘=1, the 1,1-primitives are simply called primitive; otherwise they are called skew primitive.

The following result is a generalization of [11].

Lemma 3.2. Let ๐‘Š be the weak Hopf algebra defined above. One has ๐‘”๐‘ƒ๐‘Ž,๐‘(๐‘Š)โŠ†๐‘ƒ๐‘”๐‘Ž,๐‘”๐‘(๐‘Š),๐‘”๐‘ƒ๐‘Ž,๐‘(๐‘Š)โŠ†๐‘ƒ๐‘”๐‘Ž,๐‘”๐‘(๐‘Š).(3.1)

Proof. Let ๐‘ขโˆˆ๐‘ƒ๐‘Ž,๐‘(๐‘Š), then ฮ”(๐‘ข)=๐‘ขโŠ—๐‘Ž+๐‘โŠ—๐‘ข. Hence, =ฮ”(๐‘”๐‘ข)=ฮ”(๐‘”)ฮ”(๐‘ข)(๐‘”โŠ—๐‘”)(๐‘ขโŠ—๐‘Ž+๐‘โŠ—๐‘ข)=๐‘”๐‘ขโŠ—๐‘”๐‘Ž+๐‘”๐‘โŠ—๐‘”๐‘ขโˆˆ๐‘ƒ๐‘”๐‘Ž,๐‘”๐‘(๐‘Š).(3.2) The second inclusion is proved similarly.

Corollary. For ๐‘Š, one has dim๐‘ƒ๐‘”๐‘–+1,๐‘”๐‘–(๐‘Š)=dim๐‘ƒ๐‘”๐‘–,๐‘”๐‘–โˆ’1(๐‘Š),๐‘–โ‰ฅ2,dim๐‘ƒ๐‘”๐‘–,๐‘”๐‘–+1(๐‘Š)=dim๐‘ƒ๐‘”๐‘–โˆ’1,๐‘”๐‘–(๐‘Š),๐‘–โ‰ฅ2,dim๐‘ƒ๐‘”,๐‘”2(๐‘Š)=dim๐‘ƒ๐‘”๐‘”,๐‘”(๐‘Š)=dim๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š)=dim๐‘ƒ๐‘”2,๐‘”(๐‘Š).(3.3)

Proof. We only prove the first equation. In fact, the map ๐œ‘โˆถ๐‘ƒ๐‘”๐‘–,๐‘”๐‘–โˆ’1(๐‘Š)โ†’๐‘ƒ๐‘”๐‘–+1,๐‘”๐‘–(๐‘Š), ๐‘ขโ†ฆ๐‘”๐‘ข is a linear map with inverse ๐œ“โˆถ๐‘ƒ๐‘”๐‘–+1,๐‘”๐‘–(๐‘Š)โ†ฆ๐‘ƒ๐‘”๐‘–,๐‘”๐‘–โˆ’1(๐‘Š), ๐‘ฃโ†ฆ๐‘”๐‘ฃ. Hence, ๐‘ƒ๐‘”๐‘–,๐‘”๐‘–โˆ’1(๐‘Š) and ๐‘ƒ๐‘”๐‘–+1,๐‘”๐‘–(๐‘Š) are isomorphic as vector spaces.

Since all the dimensions in Corollary 3.3 are same, we have the following corollary.

Corollary 3.4. One has dim๐‘ƒ1,๐‘”(๐‘Š)โ‰คdim๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š),dim๐‘ƒ๐‘”,1(๐‘Š)โ‰คdim๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š).(3.4)

Proof. The map ๐œ‘โˆถ๐‘ƒ๐‘”,1(๐‘Š)โ†’๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š), ๐‘ขโ†ฆ๐‘”๐‘”๐‘ข is a linear map. If ๐œ‘(๐‘ข)=๐‘”๐‘”๐‘ข=๐‘™(๐‘”โˆ’๐‘”๐‘”), for some ๐‘™โˆˆ๐‘˜, then ๐‘ขโˆˆ๐‘˜๐บ(๐‘Š), the vector space spanned by all group-like elements, because ๐‘Š is graded. Hence, ๐‘ข=๐‘™(๐‘”โˆ’1). Therefore, the linear map ๐œ‘ is an injection. Consequently, dim๐‘ƒ1,๐‘”(๐‘Š)โ‰คdim๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š).(3.5) The proof of the second inequality is similar.

By the above discussion we know that weak Hopf algebra ๐‘Š is determined by ๐‘ƒ1,๐‘”(๐‘Š), ๐‘ƒ๐‘”,1(๐‘Š), and ๐‘ƒ๐‘”,๐‘”๐‘”(๐‘Š). Take ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›1 to be linearly independent nontrivial elements in ๐‘ƒ1,๐‘”(๐‘Š), and ๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘›2 linearly independent nontrivial elements in ๐‘ƒ๐‘”,1(๐‘Š). Let

๐‘ƒ๐‘”,๐‘”๐‘”๎€ท๐‘”(๐‘Š)=๐‘”๐‘ƒ1,๐‘”(๐‘Š)+๐‘”๐‘ƒ๐‘”,1๎€ธ(๐‘Š)โŠ•๐‘‰,(3.6) and ๐‘ง1,โ€ฆ,๐‘ง๐‘›3 a basis of ๐‘‰. Then ๐‘Š is determined by ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›1, ๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘›2, ๐‘ง1,โ€ฆ,๐‘ง๐‘›3.

To summarize, we define weak Hopf algebra ๐‘Š(๐‘›1,๐‘›2,๐‘›3) corresponding to ๐ป๐‘› as follows.

Definition 3.5. Let ๐‘˜ be a field. For any positive integers ๐‘›1,๐‘›2,๐‘›3, and nonzero element ๐‘žโˆˆ๐‘˜, we define ๐‘Š(๐‘›1,๐‘›2,๐‘›3) to be associative algebra over field ๐‘˜ generated by 1,๐‘”,๐‘”,๐‘ฅ๐‘–,๐‘ฆ๐‘—,๐‘ง๐‘˜, ๐‘–=1,2,โ€ฆ,๐‘›1,๐‘—=1,2,โ€ฆ,๐‘›2,๐‘˜=1,2,โ€ฆ,๐‘›3, subject to ๐‘”๐‘”=๐‘”๐‘”,๐‘”๐‘”2=๐‘”,๐‘”2๐‘”=๐‘”,(3.7)๐‘”๐‘ฅ๐‘–=๐‘ž๐‘ฅ๐‘–๐‘”,๐‘”๐‘ฅ๐‘–=๐‘žโˆ’1๐‘ฅ๐‘–๐‘”,๐‘–=1,2,โ€ฆ,๐‘›1,(3.8)๐‘”๐‘ฆ๐‘—=๐‘ž๐‘ฆ๐‘—๐‘”,๐‘”๐‘ฆ๐‘—=๐‘žโˆ’1๐‘ฆ๐‘—๐‘”,๐‘—=1,2,โ€ฆ,๐‘›2,(3.9)๐‘”๐‘ง๐‘˜๐‘”=๐‘ž๐‘ง๐‘˜,๐‘˜=1,2,โ€ฆ,๐‘›3.(3.10)

๐‘Š(๐‘›1,๐‘›2,๐‘›3) can be endowed with coalgebra structure by

ฮ”๎€ท๐‘ฅฮ”(๐‘”)=๐‘”โŠ—๐‘”,(3.11)๐‘–๎€ธ=๐‘ฅ๐‘–โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–ฮ”๎€ท๐‘ฆ,(3.12)๐‘—๎€ธ=๐‘ฆ๐‘—โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—ฮ”๎€ท๐‘ง,(3.13)๐‘˜๎€ธ=๐‘ง๐‘˜โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘ง๐‘˜๎€ท,(3.14)๐œ€(1)=๐œ€(๐‘”)=๐œ€๐‘”๎€ธ๎€ท๐‘ฅ=1,๐œ€๐‘–๎€ธ๎€ท๐‘ฆ=0,๐œ€๐‘—๎€ธ๎€ท๐‘ง=0,๐œ€๐‘˜๎€ธ=0,(3.15) while the weak antipode ๐‘‡ is induced by

๐‘‡(1)=1,๐‘‡(๐‘”)=๎€ท๐‘”,๐‘‡๐‘”๎€ธ๐‘‡๎€ท๐‘ฅ=๐‘”,(3.16)๐‘–๎€ธ=โˆ’๐‘ฅ๐‘–๎€ท๐‘ฆ๐‘”,๐‘‡๐‘—๎€ธ=โˆ’๐‘”๐‘ฆ๐‘—๎€ท๐‘ง,๐‘‡๐‘˜๎€ธ=โˆ’๐‘ง๐‘˜๐‘”,(3.17)

Theorem 3.6. For any positive integers ๐‘›1,๐‘›2,๐‘›3, ๐‘Š(๐‘›1,๐‘›2,๐‘›3) is a weak Hopf algebra.

Proof. First we must check that the coproduct ฮ” is an algebra map. It suffices to prove that ฮ” preserves the relations (3.7)โ€“(3.10). It is easy to see that ฮ” preserves the relations (3.7). And ฮ”๎€ท๐‘”๐‘ฅ๐‘–๎€ธ=๎€ท๐‘ฅ(๐‘”โŠ—๐‘”)๐‘–โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–๎€ธ=๐‘”๐‘ฅ๐‘–โŠ—๐‘”2+๐‘”โŠ—๐‘”๐‘ฅ๐‘–=๎€ท๐‘ž๐‘ฅ๐‘–๐‘”๎€ธโŠ—๐‘”2๎€ท+๐‘”โŠ—๐‘ž๐‘ฅ๐‘–๐‘”๎€ธ๎€ท๐‘ฅ=๐‘ž๐‘–โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–๎€ธ๎€ท(๐‘”โŠ—๐‘”)=ฮ”๐‘ž๐‘ฅ๐‘–๐‘”๎€ธ,ฮ”๎€ท๐‘”๐‘ฆ๐‘—๎€ธ๎€ท๐‘ฆ=(๐‘”โŠ—๐‘”)๐‘—โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—๎€ธ=๐‘”๐‘ฆ๐‘—โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘”๐‘ฆ๐‘—=๎€ท๐‘ž๐‘ฆ๐‘—๐‘”๎€ธโŠ—๐‘”+๐‘”๎€ท๐‘”โŠ—๐‘ž๐‘ฆ๐‘—๐‘”๎€ธ๎€ท๐‘ฆ=๐‘ž๐‘—โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—๎€ธ(๎€ท๐‘”โŠ—๐‘”)=ฮ”๐‘ž๐‘ฆ๐‘—๐‘”๎€ธ,ฮ”๎€ท๐‘”๐‘ง๐‘˜๐‘”๎€ธ๎€ท๐‘ง=(๐‘”โŠ—๐‘”)๐‘˜โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘ง๐‘˜๎€ธ๎€ท๐‘”โŠ—๐‘”๎€ธ=๐‘”๐‘ง๐‘˜๐‘”โŠ—๐‘”๐‘”๐‘”+๐‘”๐‘”๐‘”๐‘”โŠ—๐‘”๐‘ง๐‘˜๐‘”=๎€ท๐‘ž๐‘ง๐‘˜๎€ธโŠ—๐‘”+๐‘”๎€ท๐‘”โŠ—๐‘ž๐‘ง๐‘˜๎€ธ๎€ท=ฮ”๐‘ž๐‘ง๐‘˜๎€ธ.(3.18) Next we prove that ๐‘‡ is the weak antipode. It suffices to prove that for each generator g,๐‘”,๐‘ฅ๐‘–,๐‘ฆ๐‘—,๐‘ง๐‘˜, the action of ๐‘‡โˆ—๐‘–๐‘‘โˆ—๐‘‡ is the same as that of ๐‘‡, and the action of ๐‘–๐‘‘โˆ—๐‘‡โˆ—๐‘–๐‘‘ is the same as that of ๐‘–๐‘‘.
Since
๎€ท๐‘ฅ(ฮ”โŠ—๐‘–๐‘‘)ฮ”๐‘–๎€ธ=๎€ท๐‘ฅ(ฮ”โŠ—๐‘–๐‘‘)๐‘–โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–๎€ธ=๎€ท๐‘ฅ๐‘–โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–๎€ธโŠ—๐‘”+1โŠ—1โŠ—๐‘ฅ๐‘–=๐‘ฅ๐‘–โŠ—๐‘”โŠ—๐‘”+1โŠ—๐‘ฅ๐‘–โŠ—๐‘”+1โŠ—1โŠ—๐‘ฅ๐‘–,(3.19) we get ๎€ท๐‘ฅ(๐‘–๐‘‘โˆ—๐‘‡โˆ—๐‘–๐‘‘)๐‘–๎€ธ=๐‘ฅ๐‘–๎€ท๐‘”๐‘”+โˆ’๐‘ฅ๐‘–๐‘”๎€ธ๐‘”+๐‘ฅ๐‘–=๐‘ฅ๐‘–๎€ท๐‘ฅ=๐‘–๐‘‘๐‘–๎€ธ,(๎€ท๐‘ฅ๐‘‡โˆ—๐‘–๐‘‘โˆ—๐‘‡)๐‘–๎€ธ=๎€ทโˆ’๐‘ฅ๐‘–๐‘”๎€ธ๐‘”๐‘”+๐‘ฅ๐‘–๎€ท๐‘”+โˆ’๐‘ฅ๐‘–๐‘”๎€ธ=โˆ’๐‘ฅ๐‘–๎€ท๐‘”๐‘”๐‘”๎€ธ=โˆ’๐‘ฅ๐‘–๎€ท๐‘ฅ๐‘”=๐‘‡๐‘–๎€ธ.(3.20) Since ๎€ท๐‘ฆ(ฮ”โŠ—๐‘–๐‘‘)ฮ”๐‘—๎€ธ=๎€ท๐‘ฆ(ฮ”โŠ—๐‘–๐‘‘)๐‘—โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—๎€ธ=๎€ท๐‘ฆ๐‘—โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—๎€ธโŠ—1+๐‘”โŠ—๐‘”โŠ—๐‘ฆ๐‘—=๐‘ฆ๐‘—โŠ—1โŠ—1+๐‘”โŠ—๐‘ฆ๐‘—โŠ—1+๐‘”โŠ—๐‘”โŠ—๐‘ฆ๐‘—,(3.21) it follows that ๎€ท๐‘ฆ(๐‘–๐‘‘โˆ—๐‘‡โˆ—๐‘–๐‘‘)๐‘—๎€ธ=๐‘ฆ๐‘—+๐‘”๎€ทโˆ’๐‘”๐‘ฆ๐‘—๎€ธ+๐‘”๐‘”๐‘ฆ๐‘—=๐‘ฆ๐‘—๎€ท๐‘ฆ=๐‘–๐‘‘๐‘—๎€ธ,๎€ท๐‘ฆ(๐‘‡โˆ—๐‘–๐‘‘โˆ—๐‘‡)๐‘—๎€ธ=๎€ทโˆ’๐‘”๐‘ฆ๐‘—๎€ธ+๐‘”๐‘ฆ๐‘—+๐‘”๐‘”๎€ทโˆ’๐‘”๐‘ฆ๐‘—๎€ธ=โˆ’๐‘”๐‘ฆ๐‘—๎€ท๐‘ฆ=๐‘‡๐‘—๎€ธ.(3.22) Since ๎€ท๐‘ง(ฮ”โŠ—๐‘–๐‘‘)ฮ”๐‘˜๎€ธ=๎€ท๐‘ง(ฮ”โŠ—๐‘–๐‘‘)๐‘˜โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘ง๐‘˜๎€ธ=๎€ท๐‘ง๐‘˜โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘ง๐‘˜๎€ธโŠ—๐‘”+๐‘”๐‘”โŠ—๐‘”๐‘”โŠ—๐‘ง๐‘˜=๐‘ง๐‘˜โŠ—๐‘”โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘ง๐‘˜โŠ—๐‘”+๐‘”๐‘”โŠ—๐‘”๐‘”โŠ—๐‘ง๐‘˜,๐‘ง๐‘˜๐‘”๐‘”=๐‘žโˆ’1๐‘”๐‘ง๐‘˜๐‘”๐‘”๐‘”=๐‘žโˆ’1๐‘”๐‘ง๐‘˜๐‘”=๐‘ง๐‘˜,๐‘”๐‘”๐‘ง๐‘˜=๐‘žโˆ’1๐‘”๐‘”๐‘”๐‘ง๐‘˜๐‘”=๐‘žโˆ’1๐‘”๐‘ง๐‘˜๐‘”=๐‘ง๐‘˜,(3.23) we get ๎€ท๐‘ง(๐‘–๐‘‘โˆ—๐‘‡โˆ—๐‘–๐‘‘)๐‘˜๎€ธ=๐‘ง๐‘˜๐‘”๐‘”+๐‘”๐‘”๎€ทโˆ’๐‘ง๐‘˜๐‘”๎€ธ๐‘”+๐‘”๐‘”๐‘”๐‘”๐‘ง๐‘˜=๐‘ง๐‘˜โˆ’๐‘ž๐‘”๐‘ง๐‘˜๐‘”+๐‘”๐‘”๐‘ง๐‘˜=๐‘ง๐‘˜โˆ’๐‘ง๐‘˜+๐‘ง๐‘˜=๐‘ง๐‘˜๎€ท๐‘ง=๐‘–๐‘‘๐‘˜๎€ธ,๎€ท๐‘ง(๐‘‡โˆ—๐‘–๐‘‘โˆ—๐‘‡)๐‘˜๎€ธ=๎€ทโˆ’๐‘ง๐‘˜๐‘”๎€ธ๐‘”๐‘”+๐‘”๐‘”๐‘ง๐‘˜๐‘”+๐‘”๐‘”๐‘”๐‘”๎€ทโˆ’๐‘ง๐‘˜๐‘”๎€ธ=๎€ทโˆ’๐‘ง๐‘˜๐‘”๎€ธ+๐‘ง๐‘˜๎€ท๐‘”+โˆ’๐‘ง๐‘˜๐‘”๎€ธ=โˆ’๐‘ง๐‘˜๎€ท๐‘ง๐‘”=๐‘‡๐‘˜๎€ธ.(3.24)

4. The Structure of ๐‘Š(๐‘›1,๐‘›2,๐‘›3)

In this section we study the algebra and coalgebra structure of ๐‘Š(๐‘›1,๐‘›2,๐‘›3).

It is easy to prove that the elements ๐‘”๐‘” and 1โˆ’๐‘”๐‘” are a pair of orthogonal central idempotents. Set ๐‘Š1=๐‘Š(๐‘›1,๐‘›2,๐‘›3)๐‘”๐‘”, ๐‘Š2=๐‘Š(๐‘›1,๐‘›2,๐‘›3)(1โˆ’๐‘”๐‘”). We have the following.

Theorem 4.1. ๐‘Š(๐‘›1,๐‘›2,๐‘›3) can be written as a direct sum of two-sided ideals ๐‘Š(๐‘›1,๐‘›2,๐‘›3)=๐‘Š1โจ๐‘Š2. And one has the following. (1)As an algebra, ๐‘Š1 is isomorphic to ๐ป๐‘›, where ๐‘›=๐‘›1+๐‘›2+๐‘›3.(2)As an algebra, ๐‘Š2 is isomorphic to the free associative algebra ๐‘˜โŸจ๐‘Œ1,โ€ฆ,๐‘Œ๐‘กโŸฉ of ๐‘ก generators, where ๐‘ก=๐‘›1+๐‘›2.

Proof. (1)โ€‰โ€‰Since ๐‘”๐‘” and 1โˆ’๐‘”๐‘” are a pair of orthogonal central idempotents,
๐‘Š๎€ท๐‘›1,๐‘›2,๐‘›3๎€ธ๎€ท๐‘›=๐‘Š1,๐‘›2,๐‘›3๎€ธ๐‘”๎€ท๐‘›๐‘”โŠ•๐‘Š1,๐‘›2,๐‘›3๎€ธ๎€ท1โˆ’๐‘”๐‘”๎€ธ=๐‘Š1โŠ•๐‘Š2.(4.1) The isomorphism ๐‘Š1โ†’๐ป๐‘› is induced by ๐‘ฅ๐‘–๐‘”๐‘”โ†ฆ๐‘‹๐‘–, ๐‘ฆ๐‘—๐‘”๐‘”โ†ฆ๐‘‹๐‘›1+๐‘—, ๐‘ง๐‘˜๐‘”๐‘”โ†ฆ๐‘‹๐‘›1+๐‘›2+๐‘˜, ๐‘”๐‘”โ†ฆ1, ๐‘”2๐‘”โ†ฆ๐พ.
(2)โ€‰โ€‰Note that ๐‘ง๐‘˜(1โˆ’๐‘”๐‘”)=0 and ๐‘ฅ๐‘–(1โˆ’๐‘”๐‘”)๐‘ฆ๐‘—(1โˆ’๐‘”๐‘”)=๐‘ฆ๐‘—(1โˆ’๐‘”๐‘”)๐‘ฅ๐‘–(1โˆ’๐‘”๐‘”). Since ๐‘ฅ๐‘–(1โˆ’๐‘”๐‘”),๐‘ฆ๐‘—(1โˆ’๐‘”๐‘”) are generators of ๐‘Š2, the isomorphism ๐‘Š2โ†’๐‘˜โŸจ๐‘Œ1,โ€ฆ,๐‘Œ๐‘กโŸฉ is defined by (1โˆ’๐‘”2)โ†ฆ1, ๐‘ฅ๐‘–(1โˆ’๐‘”2)โ†ฆ๐‘Œ๐‘–, ๐‘ฆ๐‘—(1โˆ’๐‘”2)โ†ฆ๐‘Œ๐‘›1+๐‘—.

A weak Hopf ideal ๐ฝ of a weak Hopf algebra ๐ป is a bi-ideal such that ๐‘‡(๐ฝ)โŠ‚๐ฝ, where ๐‘‡ is the weak antipode of ๐ป. It is easy to see that ๐ป/๐ฝ has a natural structure of a weak Hopf algebra.

Theorem 4.2. The ideal ๐ฝ in ๐‘Š(๐‘›1,๐‘›2,๐‘›3) generated by 1โˆ’๐‘”๐‘” is a weak Hopf ideal. And the quotient weak Hopf algebra ๐‘Š(๐‘›1,๐‘›2,๐‘›3)/๐ฝ is a Hopf algebra, which is isomorphic to ๐ป๐‘›, where ๐‘›=๐‘›1+๐‘›2+๐‘›3.

Proof. Since ฮ”๎€ท1โˆ’๐‘”๐‘”๎€ธ=1โŠ—1โˆ’๐‘”๐‘”โŠ—๐‘”๐‘”=1โŠ—1โˆ’๐‘”๐‘”โŠ—1+๐‘”๐‘”โŠ—1โˆ’๐‘”๐‘”โŠ—๐‘”๐‘”=๎€ท1โˆ’๐‘”๐‘”๎€ธโŠ—1+๐‘”๎€ท๐‘”โŠ—1โˆ’๐‘”๐‘”๎€ธ,๐‘‡๎€ท1โˆ’๐‘”๐‘”๎€ธ๎€ท=๐‘‡(1)โˆ’๐‘‡๐‘”๎€ธ๐‘‡(๐‘”)=1โˆ’๐‘”๐‘”,(4.2)๐ฝ is a weak Hopf ideal in ๐‘Š(๐‘›1,๐‘›2,๐‘›3).
The isomorphism ๐‘Š(๐‘›1,๐‘›2,๐‘›3)/๐ฝโ†’๐ป๐‘› is defined by ๐‘”+๐ฝโ†ฆ๐พ, ๐‘”+๐ฝโ†ฆ๐พโˆ’1, ๐‘ฅ๐‘–+๐ฝโ†ฆ๐‘‹๐‘–, ๐‘”๐‘ฆ๐‘—+๐ฝโ†ฆ๐‘‹๐‘›1+๐‘—, ๐‘ง๐‘˜+๐ฝโ†ฆ๐‘‹๐‘›1+๐‘›2+๐‘˜.

Now we give the Ext quiver of ๐‘Š(๐‘›1,๐‘›2,๐‘›3). For the definition and calculation of Ext quiver, we refer to [5, 8, 9, 12].

The Ext quiver of ๐‘Š(๐‘›1,๐‘›2,๐‘›3) is shown in Figure 1. The multiplicity of arrow ๐‘”โ‹…โ†’โ‹…1 is ๐‘›1. The multiplicity of arrow 1โ‹…โ†’โ‹…๐‘” is ๐‘›2. The multiplicity of other arrows is all ๐‘›.

Theorem 4.3. The sub-coalgebra ๐ป related to the subquiver in Figure 2 is isomorphic to ๐ป๐‘› as coalgebra.

Proof. The isomorphism ๐ปโ†’๐ป๐‘› is induced by ๐‘”๐‘”โ†ฆ1, ๐‘”โ†ฆ๐พ, ๐‘”โ†ฆ๐พโˆ’1, ๐‘ฅ๐‘–โ†ฆ๐‘‹๐‘–, ๐‘”๐‘ฆ๐‘—โ†ฆ๐‘‹๐‘›1+๐‘—, ๐‘ง๐‘˜โ†ฆ๐‘‹๐‘›1+๐‘›2+๐‘˜.

Remark 4.4. The isomorphisms described in Theorem 4.1 are not isomorphisms of bialgebras.

Remark 4.5. The weak Hopf algebras discussed in [4, 5] also have quotient Hopf algebras and sub-Hopf algebras which are isomorphic to the related Hopf algebras.

Acknowledgments

This research is supported by Doctor scientific research start fund of Henan University of Science and Technology, supported by SRF of Henan University of Science and Technology (2006zy007), and partly supported by NNSF of China (10571153).