Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2010, Article ID 638021, 8 pages
http://dx.doi.org/10.1155/2010/638021
Research Article

Dynamics and Thresholds of a Simple Epidemiological Model: Example of HIV/AIDS in Mali

1Département de Mathématiques et D'Informatique, Faculté des Sciences et Techniques, B.P.E 3206, Bamako, Mali
2Université de Lyon, INSA, ICJ UMR CNRS 5208, 69100 Lyon, France

Received 23 March 2010; Revised 13 August 2010; Accepted 23 September 2010

Academic Editor: Thomas Witelski

Copyright © 2010 Ouaténi Diallo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Derrick and P. van den Driessche, “Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population,” Discrete and Continuous Dynamical Systems. Series B, vol. 3, no. 2, pp. 299–309, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. X. Li and W. Wang, “A discrete epidemic model with stage structure,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 947–958, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Difurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983.
  4. G.-J. Han, “Bifurcation analysis on an unfolding of the Takens-Bogdanov singularity,” Journal of the Korean Mathematical Society, vol. 36, no. 3, pp. 459–467, 1999. View at Google Scholar · View at Zentralblatt MATH
  5. C. Wolf, Modélisation et analyse mathématique de la propagation d’un micro-parasite dans une population structurée en environnement hétérogène, Thèse de doctorat, 2005.
  6. M. Picq, Résolution de l’équation du transport sous contraintes, Thèse de Doctorat, Institut National des Sciences Appliquées (INSA) de Lyon, Lyon, France, 2007, http://docinsa.insa-lyon.fr/these/pont.php?&id=picq.
  7. J. P. Aubin, Applied Functional Analysis, Wiley, New York, NY, USA, 2nd edition, 2000.