Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 132081, 7 pages
http://dx.doi.org/10.1155/2011/132081
Research Article

On a New Summation Formula for 𝟐 πœ“ 𝟐 Basic Bilateral Hypergeometric Series and Its Applications

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570006, India

Received 7 December 2010; Accepted 24 January 2011

Academic Editor: J. Dydak

Copyright © 2011 D. D. Somashekara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A.-L. Cauchy, β€œMémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation linéaire, et sur diverses transformations de produits composés d'un nombre indéfini de facteurs,” Comptes Rendus de l'Académie des Sciences, Paris, vol. 17, pp. 42–50, 1893, Oeuvres de Cauchy, 1re érie, T. VIII, Gauthier-Villars, Paris, France. View at Google Scholar
  2. G. Gasper and M. Rahman, Basic Hypergeometric Series, vol. 96 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 2nd edition, 2004. View at Publisher Β· View at Google Scholar
  3. S. Ramanujan, Notebooks, vol. 2, Tata Institute of Fundamental Research, Bombay, India, 1957.
  4. B. C. Berndt, Ramanujan's Notebooks. Part III, Springer, New York, NY, USA, 1991.
  5. W. P. Johnson, β€œHow Cauchy missed Ramanujan's 1ψ1 summation,” American Mathematical Monthly, vol. 111, no. 9, pp. 791–800, 2004. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  6. S. Bhargava and D. D. Somashekara, β€œSome eta-function identities deducible from Ramanujan's 1ψ1 summation,” Journal of Mathematical Analysis and Applications, vol. 176, no. 2, pp. 554–560, 1993. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  7. S. Bhargava, D. D. Somashekara, and S. N. Fathima, β€œA new transformation for basic bilateral hypergeometric series,” Mathematics Student, vol. 74, no. 1–4, pp. 225–230, 2005. View at Google Scholar Β· View at Zentralblatt MATH
  8. D. D. Somashekara and D. Mamta, β€œOn some identities of Ramanujan found in his lost notebook,” Advanced Studies in Contemporary Mathematics, vol. 16, no. 2, pp. 171–180, 2008. View at Google Scholar Β· View at Zentralblatt MATH
  9. H. M. Srivastava, β€œSome convolution identities based upon Ramanujan’s bilateral sum,” Bulletin of the Australian Mathematical Society, vol. 49, pp. 433–427, 1994. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  10. S. Bhargava and C. Adiga, β€œA basic bilateral series summation formula and its applications,” Integral Transforms and Special Functions, vol. 2, no. 3, pp. 165–184, 1994. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  11. W. Y. C. Chen and Z.-G. Liu, β€œParameter augmentation for basic hypergeometric series. I,” in Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), B. E. Sagan and R. P. Stanley, Eds., vol. 161 of Progress in Mathematics, pp. 111–129, Birkhäuser, Boston, Mass, USA, 1998. View at Google Scholar Β· View at Zentralblatt MATH
  12. Z.-G. Liu, β€œSome operator identities and q-series transformation formulas,” Discrete Mathematics, vol. 265, no. 1–3, pp. 119–139, 2003. View at Publisher Β· View at Google Scholar Β· View at MathSciNet
  13. F. H. Jackson, β€œOn q- definite integrals,” Pure and Applied Mathematics Quarterly, vol. 41, pp. 193–203, 1910. View at Google Scholar
  14. R. Askey, β€œThe q-gamma and q-beta functions,” Applicable Analysis, vol. 8, no. 2, pp. 125–141, 1978. View at Publisher Β· View at Google Scholar
  15. E. Heine, β€œUntersuchungen über die Reihe 1+[(1-qα)(1-qβ)]/[(1-q)(1-qγ)]X+[(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)]/[(1-q)(1-q2)(1-qγ)(1-qγ+1)]X2+,” Journal fur die Reine und Angewandte Mathematik, vol. 34, pp. 285–328, 1847. View at Google Scholar