Abstract

We define the class of almost 𝛼-hyponormal operators and prove that for an operator 𝑇 in this class, (π‘‡βˆ—π‘‡)π›Όβˆ’(π‘‡π‘‡βˆ—)𝛼 is trace-class and its trace is zero when π›Όβˆˆ(0,1] and the area of the Weyl spectrum is zero.

This note is dedicated to Professor Carl M. Pearcy with the occasion of his 75th birthday.

Let β„‹ be a complex, separable, infinite-dimensional Hilbert space, and let 𝐿(β„‹) denote the algebra of all linear bounded operators on β„‹, and for 1≀𝑝<∞, let π’žπ‘(β„‹) denote the 𝑝-Schatten class on β„‹. For πΎβˆˆπ’žπ‘(β„‹), the expression ||𝐾||π‘βˆ‘βˆΆ=(βˆžπ‘›=1πœ‡π‘›(𝐾)𝑝)1/𝑝, where πœ‡1(𝐾)β‰₯πœ‡2(𝐾)β‰₯β‹― are the singular values of 𝐾, is a norm for 𝑝β‰₯1, and is only a quasinorm for 0<𝑝<1 (it does not satisfy the triangle inequality). Nevertheless, the latter case will be used in what follows.

For π‘‡βˆˆπΏ(β„‹),𝜎(𝑇) and πœŽπ‘€(𝑇) will denote the spectrum and the Weyl spectrum, respectively. Recall that Weyl spectrum is the union of the essential spectrum, πœŽπ‘’(𝑇), and all bounded components of β„‚β§΅πœŽπ‘’(𝑇) associated with nonzero Fredholm index. An operator π‘‡βˆˆπΏ(β„‹) is called (π’žπ‘,𝛼)-normal (notation: π‘‡βˆˆπ‘π›Όπ‘(β„‹)) if πΆπ›Όπ‘‡βˆΆ=(π‘‡βˆ—π‘‡)π›Όβˆ’(π‘‡π‘‡βˆ—)𝛼 belongs to π’žπ‘(β„‹), and 𝑇 is called (π’žπ‘,𝛼)-hyponormal (notation: π‘‡βˆˆπ»π›Όπ‘(β„‹)) if 𝐢𝛼𝑇 is the sum of a positive definite operator and an operator in π’žπ‘(β„‹), or equivalently, (𝐢𝛼𝑇)βˆ’ (the negative part of 𝐢𝛼𝑇) belongs to π’žπ‘(β„‹), where 𝛼 is a positive number. This note will be concerned with the particular class 𝐻𝛼1(β„‹), which by some parallelism with some terminology used in [1], would be appropriate to be referred as almost 𝛼-hyponormal operators.

Voiculescu's [1] generalization of Berger-Shaw inequality gives an estimate for the trace of 𝐢1𝑇. The result was extended in [2]. The combination of these results will be stated after recalling some terminology and notation. The rational cyclic multiplicity of an operator 𝑇 in 𝐿(β„‹), denoted by π‘š(𝑇), is the smallest cardinal number π‘š with the property that there are π‘š vectors π‘₯1,…,π‘₯π‘š in β„‹ such that βˆ¨ξ€½π‘“(𝑇)π‘₯π‘—βˆ£1β‰€π‘—β‰€π‘š,π‘“βˆˆRatξ€Ύ(𝜎(𝑇))=β„‹,(1) where Rat(𝜎(𝑇)) is the algebra of complex-valued rational functions with poles off 𝜎(𝑇).

For a Borel subset πΈβŠ†β„‚ and 𝛼>0, denote πœ‡π›Όβˆ¬(𝐸)=(𝛼/2)πΈπœŒπ›Όβˆ’1π‘‘πœŒπ‘‘πœƒ. In particular, πœ‡2 is the planar Lebesgue measure.

Theorem A (see [1, 2]). Suppose π‘‡βˆˆπ»11(β„‹). If there exists πΎβˆˆπ’ž2(β„‹) such that either π‘š(𝑇+𝐾)<∞ or πœ‡2(𝜎(𝑇+𝐾))=0, then π‘‡βˆˆπ‘11(β„‹). Moreover, when π‘š(𝑇+𝐾)<∞, 𝐢tr1π‘‡ξ€Έβ‰€π‘š(𝑇+𝐾)πœ‹β‹…πœ‡2(𝜎(𝑇+𝐾)),(2) and when πœ‡2(𝜎(𝑇+𝐾))=0,tr(𝐢1𝑇)≀0,   and consequently, tr(𝐢1𝑇)=0.

In fact, it was observed in [2] that the inequality can be improved by replacing π‘š(𝑇+𝐾) with 𝜏(𝑇+𝐾), where [𝜏(𝑆)∢=liminfran],π‘˜(πΌβˆ’π‘ƒ)𝑆𝑃(3) and the liminf is taken over all sequences of finite-rank orthogonal projections such that 𝑃→𝐼 in the strong operator topology.

Corollary B (see [2]). Let π‘‡βˆˆπ»11(β„‹) such that πœ‡2(πœŽπ‘€(𝑇))=0. Then π‘‡βˆˆπ‘11(β„‹) and tr(𝐢1𝑇)=0.

On the other hand, Berger-Shaw inequality was extended to operators in 𝐻𝛼1(β„‹) using similar circle of ideas used in [1]. This was done in [3] for the case π›Όβˆˆ[(1/2),1] and later on in [4] for the case π›Όβˆˆ(0,(1/2)].

Theorem C (see [3, 4]). Let 0<𝛼≀1, and let π‘‡βˆˆπ»π›Ό1(β„‹) and πΎβˆˆπ’ž2𝛼(β„‹) with π‘š(𝑇+𝐾)<∞. Then π‘‡βˆˆπ‘π›Ό1(β„‹) and 𝐢trπ›Όπ‘‡ξ€Έβ‰€π‘š(𝑇+𝐾)πœ‹β‹…πœ‡2𝛼(𝜎(𝑇+𝐾)).(4)

The case in which π‘š(𝑇+𝐾)=∞ and πœ‡2𝛼(𝜎(𝑇+𝐾))=0 was not discussed in [4] or [3]. It is the goal of this note to make some progress towards this case. We have the following.

Theorem 1. Let π›Όβˆˆ(0,1) and let π‘‡βˆˆπ»π›Ό1(β„‹) and πΎβˆˆπ’žπ›Ό(β„‹) with πœ‡2𝛼(𝜎(𝑇+𝐾))=0. Then π‘‡βˆˆπ‘π›Ό1(β„‹) and tr(𝐢𝛼𝑇)=0.

Remark. It would have been desirable that Theorem 1 be proved with the hypothesis that πΎβˆˆπ’ž2𝛼(β„‹).

Before we prove Theorem 1, we extract a similar consequence to Corollary B.

Corollary 2. Let π›Όβˆˆ(0,1] and let π‘‡βˆˆπ»π›Ό1(β„‹) such that πœ‡2(πœŽπ‘€(𝑇))=0. Then π‘‡βˆˆπ‘π›Ό1(β„‹) and tr(𝐢𝛼𝑇)=0.

Proof. If 𝛼=1, then conclusion holds according to Corollary B. Let π›Όβˆˆ(0,1). First, a careful inspection of the proof of a result of Stampfli [5] leads to the following. For π‘‡βˆˆπΏ(β„‹) and 𝛼>0, there exists πΎπ›Όβˆˆπ’žπ›Ό(β„‹) such that 𝜎(𝑇+𝐾𝛼)β§΅πœŽπ‘€(𝑇) consists of a countable set which clusters only on πœŽπ‘€(𝑇). Therefore πœ‡2(𝜎(𝑇+𝐾𝛼))=0 and thus Theorem 1 applies.

The proof of Theorem 1 makes use of the following three inequalities.

Proposition D (Hansen's inequality [6]). If 𝐴,𝐡∈𝐿(β„‹), 𝐴β‰₯0, ||𝐡||≀1, and π›Όβˆˆ(0,1], then π΅βˆ—π΄π›Όπ΅β‰€(π΅βˆ—π΄π΅)𝛼.

Proposition E (Lowner's inequality [7]). If 𝐴,𝐡∈𝐿(β„‹), 𝐴β‰₯𝐡β‰₯0, and π›Όβˆˆ(0,1], then 𝐴𝛼β‰₯𝐡𝛼.

The following is a consequence of Theorem 3.4 of [8].

Proposition F (Jocic's inequality [8]). Let 𝐴,𝐡∈𝐿(β„‹), 𝐴,𝐡β‰₯0, π›Όβˆˆ(0,1], and 1≀𝑝<∞. If π΄βˆ’π΅βˆˆπ’žπ›Όπ‘(β„‹), then π΄π›Όβˆ’π΅π›Όβˆˆπ’žπ‘(β„‹) and ||π΅π›Όβˆ’π΄π›Ό||𝑝≀|||π΅βˆ’π΄|𝛼||𝑝.

Proof of Theorem 1. Let π›Όβˆˆ(0,1),β€‰β€‰π‘‡βˆˆπ»π›Ό1(β„‹), and πΎβˆˆπ’žπ›Ό(β„‹) with πœ‡2𝛼(𝜎(𝑇+𝐾))=0, and assume π‘š(𝑇+𝐾)=∞, otherwise Theorem C implies π‘‡βˆˆπ‘π›Ό1(β„‹).
Let {𝑒𝑛}π‘›βˆˆβ„• be an orthonormal basis of β„‹ and let β„‹π‘›ξ€½π‘Ÿ=∨(𝑇+𝐾)π‘’π‘—βˆ£π‘—=1,…,𝑛,π‘ŸβˆˆRatξ€Ύ.(𝜎(𝑇+𝐾))(5) Assume that with respect to the decomposition β„‹=β„‹π‘›βŠ•β„‹βŸ‚π‘›, operators 𝑇 and 𝐾 are written as 𝑇𝑇=1𝑛𝑇2𝑛𝑇3𝑛𝑇4𝑛𝐾,𝐾=1𝑛𝐾2𝑛𝐾3𝑛𝐾4𝑛.(6) Since ℋ𝑛 is a rationally invariant subspace for 𝑇+𝐾, we have 𝑇3𝑛+𝐾3𝑛=0, and thus 𝑇3𝑛=βˆ’πΎ3π‘›βˆˆπ’žπ›Ό(ℋ𝑛)βŠ†π’ž2𝛼(ℋ𝑛), and 𝜎(𝑇1𝑛+𝐾1𝑛)βŠ†πœŽ(𝑇+𝐾), which implies πœ‡2𝛼(𝜎(𝑇1𝑛+𝐾1𝑛))=0.
Let 𝑃𝑛 be the orthogonal projection onto ℋ𝑛, and thus 𝑃𝑛↑𝐼 strongly. We will prove next that 𝑇1π‘›βˆˆπ»π›Ό1(ℋ𝑛) by first establishing that π‘ƒπ‘›πΆπ›Όπ‘‡π‘ƒπ‘›βˆ’πΆπ›Όπ‘‡1𝑛=βˆ’π‘„ξ…žπ‘›+πΎξ…žπ‘›,(7a) where π‘„ξ…žπ‘›βˆˆπΏ(ℋ𝑛) is positive semidefinite and πΎξ…žπ‘›βˆˆπ’ž1(ℋ𝑛).
Assuming that equality (7a) was already proved and writing 𝐢𝛼𝑇=𝑄+𝐾 with 𝑄β‰₯0 and πΎβˆˆπ’ž1(β„‹), then we have 𝐢𝛼𝑇1𝑛=𝑃𝑛𝑄𝑃𝑛+𝑃𝑛𝐾𝑃𝑛+π‘„ξ…žπ‘›βˆ’πΎξ…žπ‘›,(7b)that is, 𝐢𝛼𝑇1𝑛 is the sum of 𝑃𝑛𝑄𝑃𝑛+π‘„ξ…žπ‘›, which is a positive semidefinite operator, and of π‘ƒπ‘›πΎπ‘ƒπ‘›βˆ’πΎξ…žπ‘›, which is a trace-class operator.
Indeed, the expression π‘ƒπ‘›πΆπ›Όπ‘‡π‘ƒπ‘›βˆ’πΆπ›Όπ‘‡1𝑛 can be written as 𝐷1βˆ’π·2, where 𝐷1=π‘ƒπ‘›ξ€·π‘‡βˆ—π‘‡ξ€Έπ›Όπ‘ƒπ‘›βˆ’ξ€·π‘‡βˆ—1𝑛𝑇1𝑛𝛼,𝐷2=π‘ƒπ‘›ξ€·π‘‡π‘‡βˆ—ξ€Έπ›Όπ‘ƒπ‘›βˆ’ξ€·π‘‡1π‘›π‘‡βˆ—1𝑛𝛼.(8) We can write 𝐷1=βˆ’π‘„π‘›ξ…žξ…ž+πΎπ‘›ξ…žξ…ž, where π‘„π‘›ξ…žξ…ž=π‘ƒξ€Ίξ€·π‘›π‘‡βˆ—π‘‡π‘ƒπ‘›ξ€Έπ›Όβˆ’π‘ƒπ‘›ξ€·π‘‡βˆ—π‘‡ξ€Έπ›Όπ‘ƒπ‘›ξ€»,(9) which according to Hansen's inequality is a positive semidefinite operator, and πΎπ‘›ξ…žξ…ž=π‘ƒξ€Ίξ€·π‘›π‘‡βˆ—π‘‡π‘ƒπ‘›ξ€Έπ›Όβˆ’ξ€·π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›π‘‡π‘ƒπ‘›ξ€Έπ›Όξ€»,(10) which according to Jocic's inequality is a trace-class operator that satisfies β€–β€–πΎπ‘›ξ…žξ…žβ€–β€–1≀‖‖||π‘ƒξ€·ξ€·π‘›π‘‡βˆ—π‘‡π‘ƒπ‘›βˆ’π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›π‘‡π‘ƒπ‘›||𝛼‖‖1=β€–β€–(π‘‡βˆ—3𝑛𝑇3𝑛)𝛼‖‖1=β€–β€–π‘‡βˆ—3𝑛𝑇3π‘›β€–β€–π›Όπ›Όβ‰€β€–β€–π‘‡βˆ—3𝑛‖‖𝛼⋅‖‖𝑇3𝑛‖‖𝛼𝛼≀‖𝑇‖𝛼⋅‖‖𝑇3𝑛‖‖𝛼𝛼.(11) Concerning operator 𝐷2, we can write 𝐷2=π‘„π‘›ξ…žξ…žξ…ž+πΎπ‘›ξ…žξ…žξ…ž, where π‘„π‘›ξ…žξ…žξ…ž=π‘ƒπ‘›ξ€·π‘‡π‘‡βˆ—ξ€Έπ›Όπ‘ƒπ‘›βˆ’π‘ƒπ‘›ξ€·π‘‡π‘ƒπ‘›π‘‡βˆ—ξ€Έπ›Όπ‘ƒπ‘›,(12) which according to Lowner's inequality is a positive semidefinite operator, and πΎπ‘›ξ…žξ…žξ…ž=π‘ƒπ‘›ξ€·π‘‡π‘ƒπ‘›π‘‡βˆ—ξ€Έπ›Όπ‘ƒπ‘›βˆ’ξ€·π‘ƒπ‘›π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›ξ€Έπ›Ό=π‘ƒπ‘›ξ€Ίξ€·π‘‡π‘ƒπ‘›π‘‡βˆ—ξ€Έπ›Όβˆ’ξ€·π‘ƒπ‘›π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›ξ€Έπ›Όξ€»π‘ƒπ‘›,(13) which is also a trace-class operator since π‘‡π‘ƒπ‘›π‘‡βˆ—βˆ’π‘ƒπ‘›π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›=ξ€·π‘‡π‘ƒπ‘›π‘‡βˆ—βˆ’π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›ξ€Έ+ξ€·π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›βˆ’π‘ƒπ‘›π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›ξ€Έ=π‘‡π‘ƒπ‘›π‘‡βˆ—ξ€·πΌβˆ’π‘ƒπ‘›ξ€Έ+ξ€·πΌβˆ’π‘ƒπ‘›ξ€Έπ‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›=π‘‡π‘‡βˆ—3𝑛+𝑇3π‘›π‘‡βˆ—π‘ƒπ‘›βˆˆπ’žπ›Ό(β„‹),(14) and according to Jocic's inequality β€–β€–πΎπ‘›ξ…žξ…žξ…žβ€–β€–1≀‖‖(π‘‡π‘ƒπ‘›π‘‡βˆ—)π›Όβˆ’(π‘ƒπ‘›π‘‡π‘ƒπ‘›π‘‡βˆ—π‘ƒπ‘›)𝛼‖‖1≀‖‖||π‘‡π‘‡βˆ—3𝑛+𝑇3π‘›π‘‡βˆ—π‘ƒπ‘›||𝛼‖‖1=β€–β€–π‘‡π‘‡βˆ—3𝑛+𝑇3π‘›π‘‡βˆ—π‘ƒπ‘›β€–β€–π›Όπ›Όξ€·β€–β€–β‰€πΆπ‘‡π‘‡βˆ—3𝑛‖‖𝛼𝛼+‖‖𝑇3π‘›π‘‡βˆ—π‘ƒπ‘›β€–β€–π›Όπ›Όξ€Έβ‰€πΆβ€–π‘‡β€–π›Όξ€·β€–β€–π‘‡βˆ—3𝑛‖‖𝛼𝛼+‖‖𝑇3𝑛‖‖𝛼𝛼=2𝐢‖𝑇‖𝛼‖‖𝑇3𝑛‖‖𝛼𝛼.(15) Therefore, 𝐷2=π‘„π‘›ξ…žξ…žξ…ž+πΎπ‘›ξ…žξ…žξ…ž,withπ‘„π‘›ξ…žξ…žξ…žβ‰₯0,πΎπ‘›ξ…žξ…žξ…žβˆˆπΆ1(𝐻),(16) and consequently, 𝐷1βˆ’π·2=(βˆ’π‘„π‘›ξ…žξ…ž+πΎπ‘›ξ…žξ…ž)βˆ’(π‘„π‘›ξ…žξ…žξ…ž+πΎπ‘›ξ…žξ…žξ…ž)=βˆ’(π‘„π‘›ξ…žξ…ž+π‘„π‘›ξ…žξ…žξ…ž)+(πΎπ‘›ξ…žξ…žβˆ’πΎπ‘›ξ…žξ…žξ…ž), where π‘„π‘›ξ…žξ…ž+π‘„π‘›ξ…žξ…žξ…ž=βˆΆπ‘„ξ…žπ‘› is positive semidefinite and πΎπ‘›ξ…žξ…žβˆ’πΎπ‘›ξ…žξ…žξ…ž=βˆΆπΎξ…žπ‘› is trace-class, which establishes equality (7a).
According to (7b), 𝑇1π‘›βˆˆπ»π›Ό1(ℋ𝑛), and since π‘š(𝑇1𝑛+𝐾1𝑛)≀𝑛 and 𝜎(𝑇1𝑛+𝐾1𝑛)βŠ†πœŽ(𝑇+𝐾), Theorem C implies that tr(𝐢𝛼𝑇1𝑛)≀0,   and furthermore, by replacing 𝑇1𝑛 with π‘‡βˆ—1𝑛,    tr(𝐢𝛼𝑇1𝑛)=0. Furthermore, equality (7a) implies 𝑃𝑛𝐢𝛼𝑇𝑃𝑛≀𝐢𝛼𝑇1𝑛+πΎξ…žπ‘›,(17) which further implies 𝑃tr𝑛𝐢𝛼𝑇𝑃𝑛𝐾≀trξ…žπ‘›ξ€Έ.(18) Similar utilization of Lowner's and Hansen's inequalities implies that πΎπ‘›ξ…žξ…ž and βˆ’πΎπ‘›ξ…žξ…žξ…ž are positive semidefinite, and thus so is πΎξ…žπ‘›=πΎπ‘›ξ…žξ…žβˆ’πΎπ‘›ξ…žξ…žξ…ž. Therefore 𝐾trξ…žπ‘›ξ€Έβ‰€β€–β€–ξ€·πΎπ‘›ξ…žξ…žξ€Έβ€–β€–1+β€–β€–ξ€·πΎπ‘›ξ…žξ…žξ…žξ€Έβ€–β€–1≀(1+2𝐢)‖𝑇‖𝛼‖‖𝑇3𝑛‖‖𝛼𝛼.(19) Since 𝑇3𝑛=βˆ’πΎ3π‘›βˆˆπ’žπ‘(ℋ𝑛) and 𝐾3𝑛→0 weakly and both |𝑇3𝑛| and |π‘‡βˆ—3𝑛|≀||𝑇||𝐼,   we have ||𝑇3𝑛||𝛼→0, and thus tr(𝐢𝛼𝑇)≀0. Replacing 𝑇 with π‘‡βˆ— we conclude that tr(𝐢𝛼𝑇)=0.