Abstract

We consider the fourth-order spectral problem ๐‘ฆ(4)(๐‘ฅ)โˆ’(๐‘ž(๐‘ฅ)๐‘ฆโ€ฒ(๐‘ฅ))๎…ž=๐œ†๐‘ฆ(๐‘ฅ),๐‘ฅโˆˆ(0,๐‘™) with spectral parameter in the boundary condition. We associate this problem with a selfadjoint operator in Hilbert or Pontryagin space. Using this operator-theoretic formulation and analytic methods, we investigate locations (in complex plane) and multiplicities of the eigenvalues, the oscillation properties of the eigenfunctions, the basis properties in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž), of the system of root functions of this problem.

1. Introduction

The following boundary value problem is considered:๐‘ฆ(4)๎€ท(๐‘ฅ)โˆ’๐‘ž(๐‘ฅ)๐‘ฆ๎…ž๎€ธ(๐‘ฅ)๎…ž๐‘‘=๐œ†๐‘ฆ(๐‘ฅ),๐‘ฅโˆˆ(0,๐‘™),โ€ฒโˆถ=,๐‘‘๐‘ฅ(1.1)โ€‰๐‘ฆ๎…ž๐‘ฆ(0)=0,(1.2a)๐‘ฆ(0)cos๐›ฝ+๐‘‡๐‘ฆ(0)sin๐›ฝ=0,(1.2b)๎…ž(๐‘™)cos๐›พ+๐‘ฆ๎…ž๎…ž((๐‘™)sin๐›พ=0,(1.2c)๐‘Ž๐œ†+๐‘)๐‘ฆ(๐‘™)โˆ’(๐‘๐œ†+๐‘‘)๐‘‡๐‘ฆ(๐‘™)=0,(1.2d)where ๐œ† is a spectral parameter, ๐‘‡๐‘ฆโ‰ก๐‘ฆ๎…ž๎…ž๎…žโˆ’๐‘ž๐‘ฆ๎…ž, ๐‘ž is absolutely continuous function on [0,๐‘™], ๐›ฝ, ๐›พ, ๐‘Ž, ๐‘, ๐‘, and ๐‘‘ are real constants such that 0โ‰ค๐›ฝ, ๐›พโ‰ค๐œ‹/2 and ๐œŽ=๐‘๐‘โˆ’๐‘Ž๐‘‘โ‰ 0. Moreover, we assume that the equation๐‘ฆ๎…ž๎…žโˆ’๐‘ž๐‘ฆ=0,(1.3) is disfocal in [0,๐‘™], that is, there is no solution of (1.3) such that ๐‘ฆ(๐‘Ž)=๐‘ฆโ€ฒ(๐‘)=0 for any ๐‘Ž,๐‘โˆˆ[0,๐‘™]. Note that the sign of ๐‘ž which satisfies the disfocal condition may change in [0,๐‘™].

Problems of this type occur in mechanics. If ๐›ฝ=0, ๐›พ=๐œ‹/2, ๐‘=๐‘=0, and ๐‘‘=1 in the boundary conditions, then the problem (1.1), (1.2a)โ€“(1.2d) arises when variables are separated in the dynamical boundary value problem describing small oscillations of a homogeneous rod whose left end is fixed rigidly and on whose right end a servocontrol force in acting. In particular, the case when ๐‘Ž<0 corresponds to the situation where this is a particle of mass ๐‘Ž at the right end of the rod. For more complete information about the physical meaning of this type of problem see [1โ€“3].

Boundary value problems for ordinary differential operators with spectral parameter in the boundary conditions have been considered in various formulations by many authors (see, e.g., [1, 4โ€“25]). In [14โ€“16, 20, 22] the authors studied the basis property in various function spaces of the eigen- and associated function system of the Sturm-Liouville spectral problem with spectral parameter in the boundary conditions. The existence of eigenvalues, estimates of eigenvalues and eigenfunctions, oscillation properties of eigenfunctions, and expansion theorems were considered in [4, 7, 9, 12, 17, 18, 21, 24] for fourth-order ordinary differential operators with a spectral parameter in a boundary condition. The locations, multiplicities of the eigenvalues, the oscillation properties of eigenfunctions, the basis properties in ๐ฟ๐‘(0,๐‘™),๐‘โˆˆ(1,โˆž), of the system of root functions of the boundary value problem (1.1), (1.2a)โ€“(1.2d) with ๐‘žโ‰ฅ0, ๐œŽ>0, are considered in [18] and, with ๐‘žโ‰ฅ0, ๐œŽ<0, ๐‘=0, are considered in [4, 5].

The subject of the present paper is the study of the general characteristics of eigenvalue locations on a complex plane, the structure of root subspaces, the oscillation properties of eigenfunctions, the asymptotic behaviour of the eigenvalues and eigenfunctions, and the basis properties in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž), of the system of root functions of the problem (1.1), (1.2a)โ€“(1.2d).

Note that the sign of ๐œŽ plays an essential role. In the case ๐œŽ>0 we associate with problem (1.1), (1.2a)โ€“(1.2d) a selfadjoint operator in the Hilbert space ๐ป=๐ฟ2(0,๐‘™)โŠ•โ„‚ with an appropriate inner product. Using this fact and extending analytic methods to fourth-order problems, we show that all the eigenvalues are real and simple and the system of eigenfunctions, with arbitrary function removed, forms a basis in the space ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž). For ๐œŽ<0 problem (1.1), (1.2a)โ€“(1.2d) can be interpreted as a spectral problem for a selfadjoint operator in a Pontryagin space ฮ 1. It is proved below that nonreal and nonsimple (multiple) eigenvalues are possible and the system of root functions, with arbitrary function removed, forms a basis in the space ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž), except some cases where the system is neither completed nor minimal.

2. The Operator Interpretation of the Problem (1.1), (1.2a)โ€“(1.2d)

Let ๐ป=๐ฟ2(0,๐‘™)โŠ•โ„‚ be a Hilbert space equipped with the inner product(ฬ‚๐‘ฆ,ฬ‚๐‘ข)๐ป=({๐‘ฆ,๐‘š},{๐‘ข,๐‘ })๐ป=(๐‘ฆ,๐‘ข)๐ฟ2+||๐œŽโˆ’1||๐‘š๐‘ ,(2.1) where (๐‘ฆ,๐‘ข)๐ฟ2=โˆซ๐‘™0๐‘ฆ๐‘ข๐‘‘๐‘ฅ.

We define in the ๐ป operator๎€ฝ๐ฟฬ‚๐‘ฆ=๐ฟ{๐‘ฆ,๐‘š}=(๐‘‡๐‘ฆ(๐‘ฅ))๎…ž๎€พ,๐‘‘๐‘‡๐‘ฆ(๐‘™)โˆ’๐‘๐‘ฆ(๐‘™)(2.2) with domain๎€ฝ๐ท(๐ฟ)=ฬ‚๐‘ฆ={๐‘ฆ,๐‘š}โˆˆ๐ป/๐‘ฆ(๐‘ฅ)โˆˆ๐‘Š42(0,๐‘™),(๐‘‡๐‘ฆ(๐‘ฅ))๎…žโˆˆ๐ฟ2๎€พ(0,๐‘™),๐‘ฆโˆˆ(B.C.),๐‘š=๐‘Ž๐‘ฆ(๐‘™)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™),(2.3) that is dense in ๐ป [23, 25], where (B.C.) denotes the set of separated boundary conditions (1.2a)โ€“(1.2c).

Obviously, the operator ๐ฟ is well defined. By immediate verification we conclude that problem (1.1), (1.2a)โ€“(1.2d) is equivalent to the following spectral problem:๐ฟฬ‚๐‘ฆ=๐œ†ฬ‚๐‘ฆ,ฬ‚๐‘ฆโˆˆ๐ท(๐ฟ),(2.4) that is, the eigenvalue ๐œ†๐‘› of problem (1.1), (1.2a)โ€“(1.2d) and those of problem (2.4) coincide; moreover, there exists a correspondence between the eigenfunctions and the adjoint functions of the two problems:ฬ‚๐‘ฆ๐‘›=๎€ฝ๐‘ฆ๐‘›(๐‘ฅ),๐‘š๐‘›๎€พโŸท๐‘ฆ๐‘›(๐‘ฅ),๐‘š๐‘›=๐‘Ž๐‘ฆ๐‘›(๐‘™)โˆ’๐‘๐‘‡๐‘ฆ๐‘›(๐‘™).(2.5) Problem (1.1), (1.2a)โ€“(1.2d) has regular boundary conditions in the sense of [23, 25]; in particular, it has a discrete spectrum.

If ๐œŽ>0, then ๐ฟ is a selfadjoint discrete lower-semibounded operator in ๐ป and hence has a system of eigenvectors {{๐‘ฆ๐‘›(๐‘ฅ),๐‘š๐‘›}}โˆž๐‘›=1, that forms an orthogonal basis in ๐ป.

In the case ๐œŽ<0 the operator ๐ฟ is closed and non-selfadjoint and has compact resolvent in ๐ป. In ๐ป we now introduce the operator ๐ฝ by ๐ฝ{๐‘ฆ,๐‘š}={๐‘ฆ,โˆ’๐‘š}. ๐ฝ is a unitary, symmetric operator in ๐ป. Its spectrum consists of two eigenvalues: โˆ’1 with multiplicity 1, and +1 with infinite multiplicity. Hence, this operator generates the Pontryagin space ฮ 1=๐ฟ2(0,๐‘™)โŠ•โ„‚ by means of the inner products (๐ฝ-metric) [26]:(ฬ‚๐‘ฆ,ฬ‚๐‘ข)ฮ 1=({๐‘ฆ,๐‘š},{๐‘ข,๐‘ })ฮ 1=(๐‘ฆ,๐‘ข)๐ฟ2+๐œŽโˆ’1๐‘š๐‘ .(2.6)

Lemma 2.1. ๐ฟ is a ๐ฝ-selfadjoint operator in ฮ 1.

Proof. ๐ฝ๐ฟ is selfadjoint in ๐ป by virtue of Theorem 2.2 [11]. Then, J-selfadjointness of ๐ฟ on ฮ 1 follows from [27, Section 3, Proposition 30].

Lemma 2.2 (see [27, Section 3, Proposition 50]). Let ๐ฟโˆ— be an operator adjoined to the operator ๐ฟ in ๐ป. Then, ๐ฟโˆ—=๐ฝ๐ฟ๐ฝ.

Let ๐œ† be an eigenvalue of operator ๐ฟ of algebraic multiplicity ๐œˆ. Let us suppose that ๐œŒ(๐œ†) is equal to ๐œˆ if Im๐œ†โ‰ 0 and equal to whole part ๐œˆ/2 if Im๐œ†=0.

Theorem 2.3 (see [28]). The eigenvalues of operator ๐ฟ arrange symmetrically with regard to the real axis. โˆ‘๐‘›๐‘˜=1๐œŒ(๐œ†๐‘˜)โ‰ค1 for any system {๐œ†๐‘˜}๐‘›๐‘˜=1(๐‘›โ‰ค+โˆž) of eigenvalues with nonnegative parts.

From Theorem 2.3 it follows that either all the eigenvalues of boundary value problem (1.1), (1.2a)โ€“(1.2d) are simple (all the eigenvalues are real or all, except a conjugate pair of nonreal, are real) or all the eigenvalues are real and all, except one double or triple, are simple.

3. Some Auxiliary Results

As in [17, 19, 29, 30] forthe analysis of the oscillation properties of eigenfunctions of the problem (1.1), (1.2a)โ€“(1.2d) we will use a Prรผfer-type transformation of the following form:๐‘ฆ๐‘ฆ(๐‘ฅ)=๐‘Ÿ(๐‘ฅ)sin๐œ“(๐‘ฅ)cos๐œƒ(๐‘ฅ),โ€ฒ(๐‘ฆ๐‘ฅ)=๐‘Ÿ(๐‘ฅ)cos๐œ“(๐‘ฅ)sin๐œ‘(๐‘ฅ),๎…ž๎…ž(๐‘ฅ)=๐‘Ÿ(๐‘ฅ)cos๐œ“(๐‘ฅ)cos๐œ‘(๐‘ฅ),๐‘‡๐‘ฆ(๐‘ฅ)=๐‘Ÿ(๐‘ฅ)sin๐œ“(๐‘ฅ)sin๐œƒ(๐‘ฅ).(3.1)

Consider the boundary conditions (see [29, 30])๐‘ฆโ€ฒ(0)cos๐›ผโˆ’๐‘ฆ๎…ž๎…ž(0)sin๐›ผ=0,(1.2aโˆ—)๐‘ฆ(๐‘™)cos๐›ฟโˆ’๐‘‡๐‘ฆ(๐‘™)sin๐›ฟ=0,(1.2dโˆ—) where ๐›ผโˆˆ[0,๐œ‹/2], ๐›ฟโˆˆ[0,๐œ‹).

Alongside the spectral problem (1.1), (1.2a)โ€“(1.2d) we will consider the spectral problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—). In [30], Banks and Kurowski developed an extension of the Prรผfer transformation (3.1) to study the oscillation of the eigenfunctions and their derivatives of problem (1.1), (1.2aโˆ—), (1.2b), (1.2c), and (1.2dโˆ—) with ๐‘žโ‰ฅ0, ๐›ฟโˆˆ[0,๐œ‹/2] and in some cases when (1.3) is disfocal and ๐›ผ=๐›พ=0, ๐›ฟโˆˆ[0,๐œ‹/2]. In [19], the authors used the Prรผfer transformation (3.1) to study the oscillations of the eigenfunctions of the problem (1.1), (1.2aโˆ—), (1.2b), (1.2c), and (1.2dโˆ—) with ๐‘žโ‰ฅ0 and ๐›ฟโˆˆ(๐œ‹/2,๐œ‹). In this work it is proved that problem (1.1), (1.2aโˆ—), (1.2b), (1.2c), and (1.2dโˆ—) may have at most one negative and simple eigenvalue and sequence of positive and simple eigenvalues tending to infinity, the number of zeros of the eigenfunctions corresponding to positive eigenvalues behaves in that usual way (it is equal to the serial number of an eigenvalue increasing by 1); the function associated with the lowest eigenvalue has no zeros in (0,๐‘™) (however in reality, this eigenfunction has no zeros in (0,๐‘™) if the least eigenvalue is positive; the number of zeros can by arbitrary if the least eigenvalue is negative). In [31], Ben Amara developed an extension of the classical Sturm theory [32] to study the oscillation properties for the eigenfunctions of the problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) with ๐›ฝ=0, in particular, given an asymptotic estimate of the number of zeros in (0,๐‘™) of the first eigenfunction in terms of the variation of parameters in the boundary conditions.

Let ๐‘ข be a solution of (1.3) which satisfies the initial conditions ๐‘ข(0)=0, ๐‘ขโ€ฒ(0)=1. Then the disfocal condition of (1.3) implies that ๐‘ข๎…ž(๐‘ฅ)>0 in [0,๐‘™]. Therefore, if โ„Ž denotes the solution of (1.3) satisfying the initial conditions ๐‘ข(0)=๐‘>0, ๐‘ขโ€ฒ(0)=1, where ๐‘ is a sufficiently small constant, then we have also โ„Ž๎…ž(๐‘ฅ)>0 on [0,๐‘™]. Thus, โ„Ž(๐‘ฅ)>0 in [0,๐‘™], and hence the following substitutions [33, Theorem 12.1]:๐‘ก=๐‘ก(๐‘ฅ)=๐‘™๐œ”โˆ’1๎€œ๐‘ฅ0๎€œโ„Ž(๐‘ )๐‘‘๐‘ ,๐œ”=๐‘™0โ„Ž(๐‘ )๐‘‘๐‘ ,(3.2) transform [0,๐‘™] into the interval [0,๐‘™] and (1.1) into(๐‘ฬˆ๐‘ฆ)โ‹…โ‹…=๐œ†๐‘Ÿ๐‘ฆ,(3.3) where ๐‘=(๐‘™๐œ”โˆ’1โ„Ž)3, ๐‘Ÿ=๐‘™โˆ’1๐œ”โ„Žโˆ’1; โ„Ž(๐‘ฅ), ๐‘ฆ(๐‘ฅ) are taken as functions of ๐‘ก and โ‹…โˆถ=๐‘‘/๐‘‘๐‘ก. Furthermore, the following relations are useful in the sequel:ฬ‡๐‘ฆ=๐‘™โˆ’1๐œ”โ„Žโˆ’1๐‘ฆ๎…ž,๐‘™2๐œ”โˆ’2โ„Ž3ฬˆ๐‘ฆ=โ„Ž๐‘ฆ๎…ž๎…žโˆ’โ„Ž๎…ž๐‘ฆ๎…ž,๎‚๎‚€๎€ท๐‘‡๐‘ฆโ‰ก๐‘™๐œ”โˆ’1โ„Ž๎€ธ3๎‚ฬˆ๐‘ฆโ‹…=๐‘‡๐‘ฆ.(3.4) It is clear from the second relation (3.4) that the sign of ๐‘ฆ๎…ž๎…ž is not necessarily preserved after the transformation (3.2). For this reason this transformation cannot be used in any straightforward way. The following lemma of Leighton and Nehari [33] will be needed throughout our discussion. In [30, Lemma 2.1], Banks and Kurowski gave a new proof of this lemma for ๐‘žโ‰ฅ0. However, in the case when (1.3) is disfosal on (0,๐‘™], they partially proved it [30, Lemma 7.1], and therefore they were able to study problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) with ๐›พ=0, ๐›ฟโˆˆ[0,๐œ‹/2]. In [31], Ben Amara shows how Lemma 3.1 together with the transformation (3.2) can be applicable to investigate boundary conditions (1.2a)โ€“(1.2c), and (1.2dโˆ—) with ๐›ฝ=0.

Lemma 3.1 (see [33, Lemma 2.1]). Let ๐œ†>0, and let ๐‘ฆ be a nontrivial solution of (3.3). If ๐‘ฆ, ฬ‡๐‘ฆ, ฬˆ๐‘ฆ, and ๎‚๐‘‡๐‘ฆ are nonnegative at ๐‘ก=๐‘Ž (but not all zero), they are positive for all ๐‘ก>๐‘Ž. If ๐‘ฆ, โˆ’ฬ‡๐‘ฆ, ฬˆ๐‘ฆ, and โˆ’๎‚๐‘‡๐‘ฆ are nonnegative at ๐‘ก=๐‘Ž (but not all zero), they are positive for all ๐‘ก<๐‘Ž.

We also need the following results which are basic in the sequel.

Lemma 3.2. All the eigenvalues of problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) for ๐›ฟโˆˆ[0,๐œ‹/2) or ๐›ฟ=๐œ‹/2, ๐›ฝโˆˆ[0,๐œ‹/2) are positive.

Proof. In this case, the transformed problem is determined by (3.3) and the boundary conditions๎‚ฬ‡๐‘ฆ(0)=0,(3.5a)๐‘ฆ(0)cos๐›ฝ+๐‘‡๐‘ฆ(0)sin๐›ฝ=0,(3.5b)ฬ‡๐‘ฆ(๐‘™)cos๐›พโˆ—+๐‘(๐‘™)ฬˆ๐‘ฆ(๐‘™)sin๐›พโˆ—๎‚=0,(3.5c)๐‘ฆ(๐‘™)cos๐›ฟโˆ’๐‘‡๐‘ฆ(๐‘™)sin๐›ฟ=0,(3.5d)where ๐›พโˆ—=arctg{๐‘™โˆ’2๐œ”2โ„Žโˆ’1(๐‘™)[โ„Ž(๐‘™)cos๐›พ+โ„Žโ€ฒ(๐‘™)sin๐›พ]โˆ’1}โˆˆ[0,๐œ‹/2).
It is known that the eigenvalues of (3.3), (3.5a)โ€“(3.5d) are given by the max-min principle [13, Page 405] using the Rayleigh quotient ๐‘…[๐‘ฆ]=๎‚€โˆซ๐‘™0๐‘ฬˆ๐‘ฆ2[๐‘ฆ]๎‚๐‘‘๐‘ก+๐‘๎‚€โˆซ๐‘™0๐‘ฆ2๎‚๐‘‘๐‘ก,(3.6) where ๐‘[๐‘ฆ]=๐‘ฆ2(0)cot๐›ฝ+ฬ‡๐‘ฆ2(๐‘™)cot๐›พโˆ—+๐‘ฆ2(๐‘™)cot๐›ฟ. It follows by inspection of the numerator ๐‘… in (3.6) that zero is an eigenvalue only in the case ๐›ฝ=๐›ฟ=๐œ‹/2. Hence, all the eigenvalues of problem (3.3), (3.5a)โ€“(3.5d) for ๐›ฟโˆˆ[0,๐œ‹/2) or ๐›ฟ=๐œ‹/2, ๐›ฝโˆˆ[0,๐œ‹/2), are positive. Lemma 3.2 is proved.

Lemma 3.3. Let ๐ธ be the space of solution of the problem (1.1), (1.2a)โ€“(1.2c). Then, dim๐ธ=1.

The proof is similar to that of [19, Lemma 2] using transformation (3.2), Lemmas 3.1 and 3.2 (see also [31, Lemma 2.2]). However, it is not true if ๐œ‹/2<๐›พ<๐œ‹ (see, e.g., [31, Page 9]). Therefore, Lemma 3.1 together with the transformation (3.2) cannot be applicable to investigate more general boundary conditions, for example, (1.2aโˆ—), (1.2b), and (1.2c) for ๐›ผโˆˆ(0,๐œ‹/2].

Lemma 3.4 (see [29, Lemma 2.2]). Let ๐œ†>0 and u be a solution of (3.3) which satisfies the boundary conditions (3.5a)โ€“(3.5c). If ๐‘Ž is a zero of ๐‘ข and ฬˆ๐‘ข in the interval (0,l), then ๎‚ฬ‡๐‘ข(๐‘ก)๐‘‡๐‘ข(๐‘ก)<0 in a neighborhood of ๐‘Ž. If ๐‘Ž is a zero of ฬ‡๐‘ข or ๎‚๐‘‡๐‘ข in (0,l), then ๐‘ข(๐‘ก)ฬˆ๐‘ข(๐‘ก)<0 in a neighborhood of ๐‘Ž.

Theorem 3.5. Let ๐‘ข be a nontrivial solution of the problem (1.1), (1.2a) and (1.2c) for ๐œ†>0. Then the Jacobian ๐ฝ[๐‘ข]=๐‘Ÿ3cos๐œ“sin๐œ“ of the transformation (3.1) does not vanish in (0,l).

Proof. Let ๐‘ข be a nontrivial solution of (1.1) which satisfies the boundary conditions (1.2a) and (1.2c). Assume first that the corresponding angle ๐œ“ satisfies ๐œ“(๐‘ฅ0)=๐‘›๐œ‹ for some integer ๐‘› and for some ๐‘ฅ0โˆˆ(0,๐‘™). Then, the transformation (3.1) implies that ๐‘ข(๐‘ฅ0)=๐‘‡๐‘ข(๐‘ฅ0)=0. Using the transformation (3.2), the solution ๐‘ข of (3.3) also satisfies ๐‘ข(๐‘ก0๎‚)=๐‘‡๐‘ข(๐‘ก0)=0, where ๐‘ก0=๐‘™โˆ’1๐œ”โˆซ๐‘ฅ00โ„Ž(๐‘ )๐‘‘๐‘ โˆˆ(0,๐‘™). However, it is incompatible with the conclusion of Lemma 3.4.
The proof of the inequality cos๐œ“(๐‘ฅ)โ‰ 0, ๐‘ฅโˆˆ(0,๐‘™), proceeds in the same fashion as in the previous case. The proof of Theorem 3.5 is complete.

Let ๐‘ฆ(๐‘ฅ,๐œ†) be a nontrivial solution of the problem (1.1), (1.2a)โ€“(1.2c) for ๐œ†>0 and ๐œƒ(๐‘ฅ,๐œ†), ๐œ‘(๐‘ฅ,๐œ†) the corresponding functions in (3.1). Without loss of generality, we can define the initial values of these functions as follows (see [30, Theorem 3.3]):๐œ‹๐œƒ(0,๐œ†)=๐›ฝโˆ’2,๐œ‘(0,๐œ†)=0.(3.7)

With obvious modifications, the results stated in [30, Sections 3โ€“5] are true for the solution of the problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) for ๐›ฟโˆˆ[0,๐œ‹/2]. In particular, we have the following results.

Theorem 3.6. ๐œƒ(๐‘™,๐œ†) is a strictly increasing continuous function on ๐œ†.

Theorem 3.7. Problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) for ๐›ฟโˆˆ[0,๐œ‹/2] (except the case ๐›ฝ=๐›ฟ=๐œ‹/2) has a sequence of positive and simple eigenvalues ๐œ†1(๐›ฟ)<๐œ†2(๐›ฟ)<โ‹ฏ<๐œ†n(๐›ฟ)โŸถโˆž.(3.8) Moreover, ๐œƒ(๐‘™,๐œ†๐‘›(๐›ฟ))=(2๐‘›โˆ’1)๐œ‹/2โˆ’๐›ฟ, ๐‘›โˆˆโ„•; the corresponding eigenfunctions ๐œ๐‘›(๐›ฟ)(๐‘ฅ) have ๐‘›โˆ’1 simple zeros in (0,l).

Remark 3.8. In the case ๐›ฝ=๐›ฟ=๐œ‹/2 the first eigenvalue of boundary value problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) is equal to zero and the corresponding eigenfunction is constant; the statement of Theorem 3.7 is true for ๐‘›โ‰ฅ2.

Obviously, the eigenvalues ๐œ†๐‘›(๐›ฟ), ๐‘›โˆˆโ„•, of the problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) are zeros of the entire function ๐‘ฆ(๐‘™,๐œ†)cos๐›ฟโˆ’๐‘‡๐‘ฆ(๐‘™,๐œ†)cos๐›ฟ=0. Note that the function ๐น(๐œ†)=๐‘‡๐‘ฆ(๐‘™,๐œ†)/๐‘ฆ(๐‘™,๐œ†) is defined for โ‹ƒ๐œ†โˆˆ๐ดโ‰ก(โ„‚/โ„)โˆช(โˆž๐‘›=1(๐œ†๐‘›โˆ’1(0),๐œ†๐‘›(0))), where ๐œ†0(0)=โˆ’โˆž.

Lemma 3.9 (see [19, Lemma 5]). Let ๐œ†โˆˆ๐ด. Then, the following relation holds: ๐‘‘๎‚€โˆซ๐‘‘๐œ†๐น(๐œ†)=๐‘™0๐‘ฆ2๎‚(๐‘ฅ,๐œ†)๐‘‘๐‘ฅ๐‘ฆ2.(๐‘™,๐œ†)(3.9)

In (1.1) we set ๐œ†=๐œŒ4. As is known (see [34, Chapter II, Section 4.5, Theorem 1]) in each subdomain ๐‘‡ of the complex ๐œŒ-plane equation (1.1) has four linearly independent solutions ๐‘ง๐‘˜(๐‘ฅ,๐œŒ), ๐‘˜=1,4, regular in ๐œŒ (for sufficiently large ๐œŒ) and satisfying the relations๐‘ง๐‘˜(๐‘ )๎€ท(๐‘ฅ,๐œŒ)=๐œŒ๐œ”๐‘˜๎€ธ๐‘ ๐‘’๐œŒ๐œ”๐‘˜๐‘ฅ[1],๐‘˜=1,4,๐‘ =0,3,(3.10) where ๐œ”๐‘˜, ๐‘˜=1,4, are the distinct fourth roots of unity, [1]=1+๐‘‚(1/๐œŒ).

For brevity, we introduce the notation ๐‘ (๐›ฟ1,๐›ฟ2)=sgn๐›ฟ1+sgn๐›ฟ2. Using relation (3.10) and taking into account boundary conditions (1.2a)โ€“(1.2c), we obtainโŽงโŽชโŽจโŽชโŽฉ๎‚€๎‚€๐œ‹๐‘ฆ(๐‘ฅ,๐œ†)=sin๐œŒ๐‘ฅ+2๎‚๎‚€๐œ‹sin๐›ฝโˆ’cos๐œŒ๐‘™+2๎‚๐‘’๐‘ (๐›ฝ,๐›พ)๐œŒ(๐‘ฅโˆ’๐‘™)๎‚[1]๎‚€๐œ‹if๐›ฝโˆˆ0,2๎‚„,โˆš๎‚€๐œ‹2sin๐œŒ๐‘ฅโˆ’4๎‚โˆ’๐‘’โˆ’๐œŒ๐‘ฅ+(โˆ’1)1โˆ’sgn๐›พโˆš๎‚€2sin๐œŒ๐‘™+(โˆ’1)sgn๐›พ๐œ‹4๎‚๐‘’๐œŒ(๐‘ฅโˆ’๐‘™)[1]โŽงโŽชโŽชโŽจโŽชโŽชโŽฉif๐›ฝ=0,(3.11)๐‘‡๐‘ฆ(๐‘ฅ,๐œ†)=โˆ’๐œŒ3๎‚€๎‚€๐œ‹cos๐œŒ๐‘ฅ+2๎‚๎‚€๐œ‹sgn๐›ฝ+cos๐œŒ๐‘™+2๎‚๐‘’๐‘ (๐›ฝ,๐›พ)๐œŒ(๐‘ฅโˆ’๐‘™)๎‚[1]๎‚€๐œ‹if๐›ฝโˆˆ0,2๎‚„,โˆ’๐œŒ3๎‚€โˆš๎‚€๐œ‹2sin๐œŒ๐‘ฅ+4๎‚โˆ’๐‘’โˆ’๐œŒ๐‘ฅโˆ’(โˆ’1)1โˆ’sgn๐›พโˆš๎‚€๐œ‹2sin๐œŒ๐‘™+4(โˆ’1)sgn๐›พ๎‚๐‘’๐œŒ(๐‘ฅโˆ’๐‘™)๎‚[1]if๐›ฝ=0.(3.12)

Remark 3.10. As an immediate consequence of (3.11), we obtain that the number of zeros in the interval (0,๐‘™) of function ๐‘ฆ(๐‘ฅ,๐œ†) tends to +โˆž as ๐œ†โ†’ยฑโˆž.

Taking into account relations (3.11) and (3.12), we obtain the asymptotic formulasโŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๎‚€โˆš๐น(๐œ†)=2๎‚1โˆ’sgn๐›พ๐œŒ3cos(๐œŒ๐‘™+(๐œ‹/2)sgn๐›ฝ+(๐œ‹/4)sgn๐›พ)[1]๎‚€๐œ‹cos(๐œŒ๐‘™+(๐œ‹/2)sgn๐›ฝ+(๐œ‹/4)(1+sgn๐›พ))if๐›ฝโˆˆ0,2๎‚„,๎‚€โˆš2๎‚1โˆ’sgn๐›พ๐œŒ3cos(๐œŒ๐‘™+(๐œ‹/4)(sgn๐›พโˆ’1))[1]cos(๐œŒ๐‘™+(๐œ‹/4)(1+sgn๐›พ))if๐›ฝ=0.(3.13) Furthermore, we have๎‚€โˆš๐น(๐œ†)=โˆ’2๎‚1โˆ’sgn๐›พ4๎”||๐œ†||3๎‚€๎€ท||๐œ†||๎€ธ1+๐‘‚โˆ’1/4๎‚,as๐œ†โŸถโˆ’โˆž.(3.14)

We define numbers ๐œ, ๐œˆ, ๐œ‚, ๐›ผ๐‘›, ๐›ฝ๐‘›, ๐œ‚๐‘›, ๐‘›โˆˆโ„•, and a function ๐‘ง(๐‘ฅ,๐‘ก), ๐‘ฅโˆˆ[0,๐‘™], ๐‘กโˆˆโ„, as follows:โŽงโŽชโŽจโŽชโŽฉ๐œ=3(1+๐‘ (๐›ฝ,๐›ฟ))4๎‚€๐œ‹โˆ’1if๐›พโˆˆ0,2๎‚„,54โˆ’38๎€ท(โˆ’1)sgn๐›ฝ+(โˆ’1)sgn๐›ฟ๎€ธโŽงโŽชโŽจโŽชโŽฉโˆ’1if๐›พ=0,๐œ‚=3(2+sgn๐›ฝ)4๎‚€๐œ‹โˆ’1if๐›พโˆˆ0,2๎‚„,54โˆ’38๎€ท(โˆ’1)sgn๐›ฝ๎€ธโŽงโŽชโŽจโŽชโŽฉโˆ’1โˆ’1if๐›พ=0,๐œˆ=3(1+๐‘ (๐›ฝ,|๐‘|))4๎‚€๐œ‹if๐›พโˆˆ0,2๎‚„,54โˆ’38๎€ท(โˆ’1)sgn๐›ฝ+(โˆ’1)sgn|๐‘|๎€ธ๐›ผif๐›พ=0,๐‘›=(๐‘›โˆ’๐œ)๐œ‹๐‘™,๐œ‚๐‘›=(๐‘›โˆ’๐œ‚)๐œ‹๐‘™,๐›ฝ๐‘›=(๐‘›โˆ’๐œˆ)๐œ‹๐‘™,โŽงโŽชโŽจโŽชโŽฉ๎‚€๐œ‹๐‘ง(๐‘ฅ,๐‘ก)=sin๐‘ก๐‘ฅ+2๎‚๎‚€๐œ‹sgn๐›ฝโˆ’cos๐‘ก๐‘™+2๎‚๐‘’๐‘ (๐›ฝ,๐›พ)โˆ’๐‘ก(๐‘™โˆ’๐‘ฅ)๎‚€๐œ‹if๐›ฝโˆˆ0,2๎‚„,โˆš๎‚€๐œ‹2sin๐‘ก๐‘ฅโˆ’4๎‚+๐‘’โˆ’๐‘ก๐‘ฅ+(โˆ’1)sgn๐›พโˆš๎‚ต2sin๐‘ก๐‘™+(โˆ’1)sgn๐›พ๐œ‹4๎‚ถ๐‘’โˆ’๐‘ก(๐‘ฅโˆ’๐‘™)if๐›ฝ=0.(3.15) By virtue of [18, Theorem 3.1], one has the asymptotic formulas4โˆš๐œ†๐‘›(๐›ฟ)=๐›ผ๐‘›๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,๐œ(3.16)๐‘›(๐›ฟ)(๎€ท๐‘ฅ)=๐‘ง๐‘ฅ,๐›ผ๐‘›๎€ธ๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,(3.17) where relation (3.17) holds uniformly for ๐‘ฅโˆˆ[0,๐‘™].

By (3.14), we havelim๐œ†โ†’โˆ’โˆž๐น(๐œ†)=โˆ’โˆž.(3.18) From Property 1 in [30] and formulas (3.9), one has the relations๐œ†1๎‚€๐œ‹2๎‚<๐œ†1(0)<๐œ†2๎‚€๐œ‹2๎‚<๐œ†2(0)<โ‹ฏ.(3.19)

Remark 3.11. It follows by Theorem 3.7, Lemma 3.9, and relations (3.18) and (3.19) that if ๐œ†>0 or ๐œ†=0, ๐›ฝโˆˆ[0,๐œ‹/2), then ๐น(๐œ†)<0; besides, if ๐œ†=0 and ๐›ฝ=๐œ‹/2, then ๐น(๐œ†)=0.

Let ๐‘ (๐œ†) be the number of zeros of the function ๐‘ฆ(๐‘ฅ,๐œ†) in the interval (0,๐‘™).

Lemma 3.12. If ๐œ†>0 and ๐œ†โˆˆ(๐œ†๐‘›โˆ’1(0),๐œ†๐‘›(0)], ๐‘›โˆˆโ„•, then ๐‘ (๐œ†)=๐‘›โˆ’1.

The proof is similar to that of [19, Lemma 10] using Theorems 3.6 and 3.7 and Remark 3.11.

Theorem 3.13. The problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโˆ—) for ๐›ฟโˆˆ(๐œ‹/2,๐œ‹) has a sequence of real and simple eigenvalues ๐œ†1(๐›ฟ)<๐œ†2(๐›ฟ)<โ‹ฏ<๐œ†๐‘›(๐›ฟ)โŸถ+โˆž,(3.20) including at most one negative eigenvalue. Moreover, (a) if ๐›ฝโˆˆ[0,๐œ‹/2), then ๐œ†1(๐›ฟ)>0 for ๐›ฟโˆˆ(๐œ‹/2,๐›ฟ0); ๐œ†1(๐›ฟ)=0 for ๐›ฟ=๐›ฟ0;๐œ†1(๐›ฟ)<0 for ๐›ฟโˆˆ(๐›ฟ0,๐œ‹), where ๐›ฟ0=arctg๐‘‡๐‘ฆ(๐‘™,0)/๐‘ฆ(๐‘™,0); (b) if ๐›ฝ=๐œ‹/2, then ๐œ†1(๐›ฟ)<0; (c) the eigenfunction ๐œ๐‘›(๐›ฟ)(๐‘ฅ), corresponding to the eigenvalue ๐œ†๐‘›(๐›ฟ)โ‰ฅ0, has exactly ๐‘›โˆ’1 simple zeros in (0,๐‘™).

The proof parallels the proof of [19, Theorem 4] using Theorems 3.5โ€“3.7 and Lemmas 3.9 and 3.12.

Lemma 3.14. The following non-selfadjoint boundary value problem: ๐‘ฆ(4)๎‚€(๐‘ฅ)โˆ’๐‘ž(๐‘ฅ)๐‘ฆโ€ฒ๎‚(๐‘ฅ)๎…ž=๐œ†๐‘ฆ(๐‘ฅ),๐‘ฅโˆˆ(0,๐‘™),๐‘ฆ(0)=๐‘ฆ๎…ž(0)=๐‘‡๐‘ฆ(0)=๐‘ฆ๎…ž(๐‘™)cos๐›พ+๐‘ฆ๎…ž๎…ž(๐‘™)sin๐›พ=0,(3.21) has an infinite set of nonpositive eigenvalues ๐œŒ๐‘› tending to โˆ’โˆž and satisfying the asymptote ๐œ†๐‘›๎‚€1=โˆ’๐‘›โˆ’4๎‚(1+sgn๐›พ)4๐œ‹4๐‘™4๎€ท๐‘›+๐‘œ4๎€ธ,๐‘›โŸถโˆž.(3.22)

Setting ๐‘ฅ=0 in (3.12), we obtain (3.22).

Remark 3.15. By Remark 3.10 the number of zeros of the eigenfunction ๐‘ฆ1(๐›ฟ)(๐‘ฅ) corresponding to an eigenvalue ๐œ†1(๐›ฟ)<0 can by arbitrary. In views of [31, Corollary 2.5], as ๐œ†1(๐›ฟ)<0 varies, new zeros of the corresponding eigenfunction ๐‘ฆ1(๐›ฟ)(๐‘ฅ) enter the interval (0,๐‘™) only through the end point ๐‘ฅ=0 (since ๐‘ฆ1(๐›ฟ)(๐‘™)โ‰ 0), and hence the number of its zeros, in the case ๐›ฝโˆˆ(0,๐œ‹/2], is asymptotically equivalent to the number of eigenvalues of the problem (3.21) which are higher than ๐œ†1(๐›ฟ). In the case ๐›ฝ=0 see [31, Theorem 5.3].

We consider the following boundary conditions:๐‘Ž๐‘ฆ(๐‘™)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™)=0,(1.2dโ€ฒ)๐‘๐‘ฆ(๐‘™)+๐‘Ž๐‘‡๐‘ฆ(๐‘™)=0.(1.2dโ€ฒ๎…ž)

Note that (๐‘Ž,๐‘)โ‰ 0 since ๐œŽ<0. The boundary condition (1.2dโ€ฒ) coincides the boundary condition (1.2dโˆ—) for ๐›ฟ=๐œ‹/2 (resp., ๐›ฟ=0) in the case ๐‘Ž=0 (resp., ๐‘=0), and the boundary condition (1.2dโ€ฒ๎…ž) coincides the boundary condition (1.2dโˆ—) for ๐›ฟ=0 (resp., ๐›ฟ=๐œ‹/2) in the case ๐‘Ž=0 ( resp., ๐‘=0).

Let ๐‘Ž๐‘โ‰ 0. The eigenvalues of the problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ) (resp., (1.1) (1.2a)โ€“(1.2c), and (1.2dโ€ฒ๎…ž)) are the roots of the equation ๐น(๐œ†)=๐‘Ž/๐‘ (resp., ๐น(๐œ†)=โˆ’๐‘/๐‘Ž). By (3.9), this equation has only simple roots; hence all the eigenvalues of the problems (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ) and (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ๎…ž) are simple. On the base of (3.9), (3.18), and (3.19) in each interval ๐ด๐‘›, ๐‘›=1,2,โ€ฆ, the equation ๐น(๐œ†)=๐‘Ž/๐‘ (resp., ๐น(๐œ†)=โˆ’๐‘/๐‘Ž) has a unique solution ๐œ‡๐‘› (resp., ๐œˆ๐‘›); moreover,๐œˆ1<๐œ†1๎‚€๐œ‹2๎‚<๐œ‡1<๐œ†1(0)<๐œˆ2<๐œ†2๎‚€๐œ‹2๎‚<๐œ‡2<๐œ†2(0)<โ‹ฏ(3.23) if ๐‘Ž/๐‘>0 and๐œ‡1<๐œ†1๎‚€๐œ‹2๎‚<๐œˆ1<๐œ†1(0)<๐œ‡2<๐œ†2๎‚€๐œ‹2๎‚<๐œˆ2<๐œ†2(0)<โ‹ฏ(3.24) if ๐‘Ž/๐‘<0. Besides, ๐œ‡1=0 if ๐‘Ž/๐‘<0 and ๐น(0)=๐‘Ž/๐‘;๐œˆ1=0 if ๐‘Ž/๐‘>0 and ๐น(0)=โˆ’๐‘/๐‘Ž.

Taking into account (1.2dโ€ฒ), (1.2dโ€ฒ๎…ž), (3.23), and (3.24) and using the corresponding reasoning [18, Theorem 3.1] we have4โˆš๐œ‡๐‘›=๐œ‚๐‘›๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,4โˆš๐œˆ๐‘›=๐œ‚๐‘›๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,๐œ‘(3.25)๐‘›๎€ท(๐‘ฅ)=๐‘ง๐‘ฅ,๐œ‚๐‘›๎€ธ๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,๐œ“๐‘›๎€ท(๐‘ฅ)=๐‘ง๐‘ฅ,๐œ‚๐‘›๎€ธ๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,(3.26) where relation (3.26) holds uniformly for ๐‘ฅโˆˆ[0,๐‘™] and eigenfunctions ๐œ‘๐‘›(๐‘ฅ) and ๐œ“๐‘›(๐‘ฅ), ๐‘›โˆˆโ„•, correspond to the eigenvalues ๐œ‡๐‘› and ๐œˆ๐‘›, respectively.

Let us denote ๐‘š(๐œ†)=๐‘Ž๐‘ฆ(๐‘™,๐œ†)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™,๐œ†).

Remark 3.16. Note that if ๐œ† is the eigenvalue of problem (1.1), (1.2a)โ€“(1.2d), then ๐‘š(๐œ†)โ‰ 0 since ๐œŽโ‰ 0.

It is easy to see that the eigenvalues of problem (1.1), (1.2a)โ€“(1.2d) are roots of the equation(๐‘Ž๐œ†+๐‘)๐‘ฆ(๐‘™)โˆ’(๐‘๐œ†+๐‘‘)๐‘‡๐‘ฆ(๐‘™)=0.(3.27)

By virtue of Remark 3.16 and formula (3.27), a simple calculation yields that the eigenvalues of the problem (1.1), (1.2a)โ€“(1.2d) can be realized at the solution of the equation๐‘๐‘ฆ(๐‘™,๐œ†)+๐‘Ž๐‘‡๐‘ฆ(๐‘™,๐œ†)=๐‘Ž๐‘Ž๐‘ฆ(๐‘™,๐œ†)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™,๐œ†)2+๐‘2โˆ’๐œŽ๐œ†+๐‘Ž๐‘+๐‘๐‘‘.โˆ’๐œŽ(3.28)

Denote ๐ต๐‘›=(๐œ‡๐‘›โˆ’1,๐œ‡๐‘›), ๐‘›โˆˆโ„•, where ๐œ‡0=โˆ’โˆž.

We observe that the function ๐บ(๐œ†)=(๐‘๐‘ฆ(๐‘™,๐œ†)+๐‘Ž๐‘‡๐‘ฆ(๐‘™,๐œ†))/(๐‘Ž๐‘ฆ(๐‘™,๐œ†)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™,๐œ†)) is well defined for โ‹ƒ๐œ†โˆˆ๐ต=(โ„‚โงตโ„)โˆช(โˆž๐‘›=1๐ต๐‘›) and is a finite-order meromorphic function and the eigenvalues ๐œˆ๐‘› and ๐œ‡๐‘›, ๐‘›โˆˆโ„•, of boundary value problems (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ๎…ž) and (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ) are zeros and poles of this function, respectively.

Let ๐œ†โˆˆ๐ต. Using formula (3.9), we get๐‘‘๎€ท๐‘Ž๐‘‘๐œ†๐บ(๐œ†)=2+๐‘2๎€ธ๐‘šโˆ’2๎€œ(๐œ†)๐‘™0๐‘ฆ2(๐‘ฅ,๐œ†)๐‘‘๐‘ฅ.(3.29)

Lemma 3.17. The expansion โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐บ(๐œ†)=๐บ(0)+โˆž๎“๐‘›=1๐œ†๐‘๐‘›๐œ‡๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธif๐œ‡1๐‘โ‰ 0,0+๐‘1๐œ†+โˆž๎“๐‘›=2๐œ†๐‘๐‘›๐œ‡๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธif๐œ‡1=0,(3.30) holds, where ๐‘๐‘›, ๐‘›โˆˆโ„•, are some negative numbers.

Proof. It is known (see [35, Chapter 6, Section 5]) that the meromorphic function ๐บ(๐œ†) with simple poles ๐œ‡๐‘› allows the representation ๐บ(๐œ†)=๐บ1(๐œ†)+โˆž๎“๐‘›=1๎‚ต๐œ†๐œ‡๐‘›๎‚ถ๐‘ ๐‘๐‘›๐œ†โˆ’๐œ‡๐‘›,(3.31) where ๐บ1(๐œ†) is an entire function, ๐‘๐‘›=res๐œ†=๐œ‡๐‘›๎€ท๎€ท๐บ(๐œ†)=๐‘๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎€ท+๐‘Ž๐‘‡๐‘ฆ๐‘™,๐œ‡๐‘›๎ƒฉ๐‘Ž๎€ท๎€ธ๎€ธ๐œ•๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎€ท๐œ•๐œ†โˆ’๐‘๐‘‡๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎ƒช๐œ•๐œ†โˆ’1,(3.32) and integers ๐‘ ๐‘›, ๐‘›โˆˆโ„•, are chosen so that series (3.31) are uniformly convergent in any finite circle (after truncation of terms having poles in this circle).
We consider the case ๐‘Ž/๐‘>0. By virtue of relation (3.18), we have lim๐œ†โ†’โˆ’โˆž๐บ(๐œ†)=โˆ’๐‘Ž/๐‘. Hence, ๐บ(๐œ†)<0 for ๐œ†โˆˆ(โˆ’โˆž,๐œˆ1) and ๐บ(๐œ†)>0 for ๐œ†โˆˆ(๐œˆ1,๐œ‡1). Without loss of generality, we can assume ๐‘Ž๐‘ฆ(๐‘™,๐œ†)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™,๐œ†)>0 for ๐œ†โˆˆ(โˆ’โˆž,๐œ‡1). Then, ๐‘๐‘ฆ(๐‘™,๐œ†)+๐‘Ž๐‘‡๐‘ฆ(๐‘™,๐œ†)<0 for ๐œ†โˆˆ(โˆ’โˆž,๐œˆ1). Since the eigenvalues ๐œ‡๐‘› and ๐œˆ๐‘›, ๐‘›โˆˆโ„•, are simple zeros of functions ๐‘Ž๐‘ฆ(๐‘™,๐œ†)โˆ’๐‘๐‘‡๐‘ฆ(๐‘™,๐œ†) and ๐‘๐‘ฆ(๐‘™,๐œ†)+๐‘Ž๐‘‡๐‘ฆ(๐‘™,๐œ†), respectively, then by (3.29) the relations (โˆ’1)๐‘›+1๎€ท๎€ท๐‘๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎€ท+๐‘Ž๐‘‡๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎€ธ>0,(โˆ’1)๐‘›+1๎ƒฉ๐‘Ž๎€ท๐œ•๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎€ท๐œ•๐œ†โˆ’๐‘๐œ•๐‘‡๐‘ฆ๐‘™,๐œ‡๐‘›๎€ธ๎ƒช๐œ•๐œ†<0,๐‘›โˆˆโ„•,(3.33) are true.
Taking into account (3.33), in (3.32) we get ๐‘๐‘›<0, ๐‘›โˆˆโ„•. The cases ๐‘Ž/๐‘<0, ๐‘Ž=0, and ๐‘=0 can be treated along similar lines.
Denote ฮฉ๐‘›(๐œ€)={๐œ†โˆˆโ„‚โˆฃ|4โˆš๐œ†โˆ’4โˆš๐œ‡๐‘›|<๐œ€} where ๐œ€>0 is some small number. From the asymptotic formula (3.25), it follows that for ๐œ€<๐œ‹/4๐‘™ the domains ฮฉ๐‘›(๐œ€) asymptotically do not intersect and contain only one pole ๐œ‡๐‘› of the function ๐บ(๐œ†).
By (3.11), (3.12), (3.23), (3.24), and (3.25), we see that outside of domains ฮฉ๐‘›(๐œ€) the asymptotic formulae are true: โŽงโŽชโŽจโŽชโŽฉโˆ’๐‘Ž๐บ(๐œ†)=๐‘๎€ท๐œŒ+๐‘‚โˆ’1๎€ธ๐œŒif๐‘Ž๐‘โ‰ 0,3๎€ท๎€ท๐œŒ๐‘ง(๐œŒ)1+๐‘‚โˆ’1๎€ธ๎€ธif๐‘=0,โˆ’๐œŒโˆ’3(๐‘ง(๐œŒ))โˆ’1๎€ท๎€ท๐œŒ1+๐‘‚โˆ’1๎€ธ๎€ธif๐‘Ž=0,(3.34) where โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ง(๐œŒ)=cos((๐œ‹/4)sgn๐›พ)cos(๐œŒ๐‘™+(๐œ‹/2)sgn๐›ฝ+(๐œ‹/4)sgn๐›พ)๎‚€๐œ‹sin((๐œ‹/4)(1+sgn๐›พ))cos(๐œŒ๐‘™+(๐œ‹/2)sgn๐›ฝ+(๐œ‹/4)(1+sgn๐›พ))if๐›ฝโˆˆ0,2๎‚„,๎‚€โˆš2๎‚1โˆ’2sgn๐›พcos(๐œŒ๐‘™โˆ’(1โˆ’sgn๐›พ)(๐œ‹/4))cos(๐œŒ๐‘™+(๐œ‹/4)sgn๐›พ)if๐›ฝ=0.(3.35)
Following the corresponding reasoning (see [36, Chapter VII, Sectionโ€‰โ€‰2, formula (27)]), we see that outside of domains ฮฉ๐‘›(๐œ€) the estimation ||||โ‰คโŽงโŽชโŽจโŽชโŽฉ๎‚‹๐‘€๐บ(๐œ†)1๎‚‹๐‘€if๐‘Ž๐‘โ‰ 0,24๎”||๐œ†||3๎‚‹๐‘€if๐‘=0,34๎”||๐œ†||โˆ’3if๐‘Ž=0,(3.36) holds; using it in (3.32) we get ||๐‘๐‘›||=||||1๎€œ2๐œ‹๐‘–๐œ•ฮฉ๐‘›(๐œ€)||||=2๐บ(๐œ†)๐‘‘๐œ†๐œ‹||||๎€œ|๐œˆโˆ’4โˆš๐œ‡๐‘›|=๐œ€๐œˆ3๐บ๎€ท๐œˆ4๎€ธ||||โ‰คโŽงโŽชโŽจโŽชโŽฉ๐‘€๐‘‘๐œˆ1๐‘›3๐‘€if๐‘Ž๐‘โ‰ 0,2๐‘›6๐‘€if๐‘=0,3if๐‘Ž=0,(3.37) where ๎‚‹๐‘€1, ๎‚‹๐‘€2, ๎‚‹๐‘€3, ๐‘€1, ๐‘€2, ๐‘€3 are some positive constants. By (3.37) and asymptotic formula (3.25) the series โˆ‘โˆž๐‘›=1๐‘๐‘›|๐œ‡๐‘›|โˆ’2 converges. Then, according to Theorem 2 in [35, Chapter 6, Section 5], in formula (3.31) we can assume ๐‘ ๐‘›=1, ๐‘›โˆˆโ„•.
Let {ฮ“๐‘›}โˆž๐‘›=1 be a sequence of the expanding circles which are not crossing domains ฮฉ๐‘›(๐œ€). Then, according to Formula (9) in [37, Chapter V, Section 13], we have ๎“๐บ(๐œ†)โˆ’๐œ‡๐‘˜โˆˆintฮ“๐‘›๐‘๐‘˜๐œ†โˆ’๐œ‡๐‘˜=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐บ(๐œ‰)๎“๐œ‰โˆ’๐œ†๐‘‘๐œ‰,๐บ(0)+๐œ‡kโˆˆintฮ“๐‘›๐‘๐‘˜๐œ‡๐‘˜=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐บ(๐œ‰)๐œ‰๐‘‘๐œ‰.(3.38) By (3.38), we get ๎“๐บ(๐œ†)โˆ’๐บ(0)=๐œ‡๐‘˜โˆˆintฮ“๐‘›๐œ†๐‘๐‘˜๐œ‡๐‘˜๎€ท๐œ†โˆ’๐œ‡๐‘˜๎€ธ=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐œ†๐บ(๐œ‰)๐œ‰(๐œ‰โˆ’๐œ†)๐‘‘๐œ‰.(3.39)
From (3.36), the right side of (3.39) tends to zero as ๐‘›โ†’โˆž. Then, passing to the limit as ๐‘›โ†’โˆž in (3.39), we obtain ๐บ(๐œ†)=๐บ(0)+โˆž๎“๐‘›=1๐œ†๐‘๐‘›๐œ‡๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธ,(3.40) which implies ๐บ1(๐œ†)โ‰ก๐บ(0).
Differentiating the right side of the least equality, we have ๐บ(๐‘ )(๐œ†)=(โˆ’1)๐‘ ๐‘ !โˆž๎“๐‘›=1๐‘๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธ๐‘ +1,๐‘ =1,2,3.(3.41) Note that the function ๐น(๐œ†) has the following expansion: ๐น(๐œ†)=๐น(0)+โˆž๎“๐‘›=1๐œ†ฬƒ๐‘๐‘›๐œ†๐‘›๎€ท(0)๐œ†โˆ’๐œ†๐‘›๎€ธ,(0)(3.42) where ฬƒ๐‘๐‘›=res๐œ†=๐œ†๐‘›(0)๐น(๐œ†),๐‘›=1,2,โ€ฆ.(3.43)
Now let ๐œ‡1=0, that is, ๐น(0)=๐‘Ž/๐‘. ๐บ(๐œ†) has the following expansion: ๐บ(๐œ†)=๐บ1(๐‘๐œ†)+1๐œ†+โˆž๎“๐‘›=2๐œ†๐‘๐‘›๐œ‡๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธ.(3.44) Again, according to Formula (9) in [37, Chapter V, Section 13], we have ๐‘๐บ(๐œ†)โˆ’1๐œ†โˆ’๎“๐œ‡๐‘˜โˆˆintฮ“๐‘›๐‘˜โ‰ 1๐‘๐‘˜๐œ†โˆ’๐œ‡๐‘˜=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐บ(๐œ‰)๐œ‰โˆ’๐œ†๐‘‘๐œ‰.(3.45) By (2.6) [18] and (3.9), we get ๐‘1=โˆ’๐‘โˆ’2๎€ท๐‘Ž2+๐‘2๎€ธ๎‚€๐นโ€ฒ๎‚(0)โˆ’1.(3.46) Using (3.42), (3.41), and (3.46), we obtain ๐‘๐บ(๐œ†)โˆ’1๐œ†๐‘Ž=โˆ’๐‘+๐‘โˆ’2๎€ท๐‘Ž2+๐‘2๎€ธโˆ‘โˆž๐‘›=1๎€ทฬƒ๐‘๐‘›/๐œ†2๐‘›๎€ท(0)๐œ†โˆ’๐œ†๐‘›(0)๎€ธ๎€ธ๐น๎…žโˆ‘(0)โˆž๐‘›=1๎€ทฬƒ๐‘๐‘›/๐œ†๐‘›๎€ท(0)๐œ†โˆ’๐œ†๐‘›.(0)๎€ธ๎€ธ(3.47) Passing to the limit as ๐œ†โ†’0 in (3.47), we get lim๐œ†โ†’0๎‚€๐‘๐บ(๐œ†)โˆ’1๐œ†๎‚๐‘Ž=โˆ’๐‘+๐‘โˆ’2๎€ท๐‘Ž2+๐‘2๎€ธ๎ƒฉโˆž๎“๐‘›=1ฬƒ๐‘๐‘›๐œ†2๐‘›๎ƒช(0)โˆ’1๎ƒฉโˆž๎“๐‘›=1ฬƒ๐‘๐‘›๐œ†3๐‘›๎ƒช(0)โˆ’1=๐‘Ž๐‘+2๐‘โˆ’2๎€ท๐‘Ž2+๐‘2๐น๎€ธ๎€ท๎…ž๎€ธ(0)โˆ’2๐น๎…ž๎…ž(0)=๐‘0.(3.48) Using (3.48) in (3.45), we have ๐‘0+๎“๐œ‡๐‘˜โˆˆintฮ“๐‘›๐‘˜โ‰ 1๐‘๐‘˜๐œ†โˆ’๐œ‡๐‘˜=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐บ(๐œ‰)๐œ‰๐‘‘๐œ‰.(3.49)
In view of (3.49) and (3.45), we get ๐บ(๐œ†)โˆ’๐‘0โˆ’๐‘1๐œ†โˆ’๎“๐œ‡๐‘˜โˆˆintฮ“๐‘›๐‘˜โ‰ 1๐œ†๐‘๐‘˜๐œ‡๐‘˜๎€ท๐œ†โˆ’๐œ‡๐‘˜๎€ธ=1๎€œ2๐œ‹๐‘–ฮ“๐‘›๐œ†๐บ(๐œ‰)๐œ‰(๐œ‰โˆ’๐œ†)๐‘‘๐œ‰.(3.50) Passing to the limit as ๐‘›โ†’โˆž in (3.50), we obtain ๐บ(๐œ†)=๐‘0+๐‘1๐œ†+โˆž๎“๐‘›=2๐œ†๐‘๐‘›๐œ‡๐‘›๎€ท๐œ†โˆ’๐œ‡๐‘›๎€ธ.(3.51)
Lemma 3.17 is proved.

4. The Structure of Root Subspaces, Location of Eigenvalues on a Complex Plane, and Oscillation Properties of Eigenfunctions of the Problem (1.1), (1.2a)โ€“(1.2d)

For ๐‘โ‰ 0, we find a positive integer ๐‘ from the inequality ๐œ‡๐‘โˆ’1<โˆ’๐‘‘/๐‘โ‰ค๐œ‡๐‘.

Theorem 4.1. The problem (1.1), (1.2a)โ€“(1.2d) for ๐œŽ>0 has a sequence of real and simple eigenvalues ๐œ†1<๐œ†2<โ‹ฏ<๐œ†๐‘›โŸถ+โˆž,(4.1) including at most 1+sgn|๐‘| number of negative ones. The corresponding eigenfunctions have the following oscillation properties.(a)If ๐‘=0, then the eigenfunction ๐‘ฆ๐‘›(๐‘ฅ), ๐‘›โ‰ฅ2, has exactly ๐‘›โˆ’1 zeros in (0,๐‘™), the eigenfunction ๐‘ฆ1(๐‘ฅ) has no zeros in (0,๐‘™) in the case ๐œ†1โ‰ฅ0, and the number of zeros of ๐‘ฆ1(๐‘ฅ) can be arbitrary in the case ๐œ†1<0.(b)If ๐‘โ‰ 0, then the eigenfunction ๐‘ฆ๐‘›(๐‘ฅ) corresponding to the eigenvalue ๐œ†๐‘›โ‰ฅ0 has exactly ๐‘›โˆ’1 simple zeros for ๐‘›โ‰ค๐‘ and exactly ๐‘›โˆ’2 simple zeros for ๐‘›>๐‘ in (0,๐‘™) and the eigenfunctions associated with the negative eigenvalues may have an arbitrary number of simple zeros in (0,๐‘™).

The proof of this theorem is similar to that of [18, Theorem 2.2] using Remark 3.15.

Throughout the following, we assume that ๐œŽ<0.

Let ๐œ†,๐œ‡(๐œ†โ‰ ๐œ‡) be the eigenvalue of the operator ๐ฟ. The eigenvectors ๐‘ฆ(๐œ†)={๐‘ฆ(๐‘ฅ,๐œ†),๐‘š(๐œ†)} and ๐‘ฆ(๐œ‡)={๐‘ฆ(๐‘ฅ,๐œ‡),๐‘š(๐œ‡)} corresponding to the eigenvalues ๐œ† and ๐œ‡, respectively, are orthogonal in ฮ 1, since the operator ๐ฟ is ๐ฝ-selfadjoint in ฮ 1. Hence, by (2.4), we have๎€œ๐‘™0๐‘ฆ(๐‘ฅ,๐œ†)๐‘ฆ(๐‘ฅ,๐œ‡)๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1๐‘š(๐œ†)๐‘š(๐œ‡).(4.2)

Lemma 4.2. Let ๐œ†โˆ—โˆˆโ„ be an eigenvalue of boundary value problem (1.1), (1.2a)โ€“(1.2d) and ๐บ๎…ž(๐œ†โˆ—)โ‰ค๐ด, where ๐ด=โˆ’(๐‘Ž2+๐‘2)/๐œŽ. Then, problem (1.1), (1.2a)โ€“(1.2d) has no nonreal eigenvalues.

Proof. Let ๐œ‡โˆˆโ„‚โงตโ„ be an eigenvalue of problem (1.1), (1.2a)โ€“(1.2d). Then, from Remark 3.16 and equality (4.2), we obtain ๎€œ๐‘™0๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธ๎ƒฉ๐‘ฆ(๐‘ฅ,๐œ‡)๎ƒช๐‘š(๐œ‡)๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1,๎€œ๐‘™0๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธ๐‘ฆ(๐‘ฅ,๐œ‡)๐‘š(๐œ‡)๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1๎€œ,(4.3)๐‘™0||||๐‘ฆ(๐‘ฅ,๐œ‡)๐‘š||||(๐œ‡)2๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1.(4.4)
In view of formula (3.29), the inequality ๎€œ๐‘™0๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธ๎ƒช2๐‘‘๐‘ฅโ‰คโˆ’๐œŽโˆ’1(4.5) is true.
By (4.3), ๎€œ๐‘™0๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธRe๐‘ฆ(๐‘ฅ,๐œ‡)๐‘š(๐œ‡)๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1.(4.6) From (4.4)โ€“(4.6), we get ๎€œ๐‘™0โŽงโŽชโŽจโŽชโŽฉ๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธโˆ’Re๐‘ฆ(๐‘ฅ,๐œ‡)๐‘š๎ƒช(๐œ‡)2+Im2๐‘ฆ(๐‘ฅ,๐œ‡)๐‘šโŽซโŽชโŽฌโŽชโŽญ(๐œ‡)๐‘‘๐‘ฅ<0if๐บโ€ฒ๎€ท๐œ†โˆ—๎€ธ๎€œ<๐ด,๐‘™0โŽงโŽชโŽจโŽชโŽฉ๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—๎€ธ๐‘š๎€ท๐œ†โˆ—๎€ธโˆ’Re๐‘ฆ(๐‘ฅ,๐œ‡)๐‘š๎ƒช(๐œ‡)2+Im2๐‘ฆ(๐‘ฅ,๐œ‡)๐‘šโŽซโŽชโŽฌโŽชโŽญ(๐œ‡)๐‘‘๐‘ฅ=0if๐บโ€ฒ๎€ท๐œ†โˆ—๎€ธ=๐ด.(4.7)
From the second relation it follows that Im(๐‘ฆ(๐‘ฅ,๐œ‡)/๐‘š(๐œ‡))=0, which by (1.1) contradicts the condition ๐œ‡โˆˆโ„‚โงตโ„. The obtained contradictions prove Lemma 4.2.

Lemma 4.3. Let ๐œ†โˆ—1,๐œ†โˆ—2โˆˆโ„, ๐œ†โˆ—1โ‰ ๐œ†โˆ—2 be eigenvalues of problem (1.1), (1.2a)โ€“(1.2d) and ๐บ๎…ž(๐œ†โˆ—1)โ‰ค๐ด. Then, ๐บ๎…ž(๐œ†โˆ—2)>๐ด.

Proof. Let ๐บโ€ฒ(๐œ†โˆ—2)โ‰ค๐ด. By (3.29) and (4.2), we have ๎€œ๐‘™0๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—1๎€ธ๐‘š๎€ท๐œ†โˆ—1๎€ธ๎ƒช2๐‘‘๐‘ฅโ‰คโˆ’๐œŽโˆ’1,๎€œ๐‘™0๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—2๎€ธ๐‘š๎€ท๐œ†โˆ—2๎€ธ๎ƒช2๐‘‘๐‘ฅโ‰คโˆ’๐œŽโˆ’1,๎€œ๐‘™0๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—1๎€ธ๐‘š๎€ท๐œ†โˆ—1๎€ธ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—2๎€ธ๐‘š๎€ท๐œ†โˆ—2๎€ธ๐‘‘๐‘ฅ=โˆ’๐œŽโˆ’1.(4.8)
Hence, we get ๎€œ๐‘™0๎ƒฉ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—1๎€ธ๐‘š๎€ท๐œ†โˆ—1๎€ธ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—2๎€ธ๐‘š๎€ท๐œ†โˆ—2๎€ธ๎ƒช๐‘‘๐‘ฅ<0if๐บโ€ฒ๎€ท๐œ†โˆ—1๎€ธ<๐ดor๐บโ€ฒ๎€ท๐œ†โˆ—2๎€ธ๎€œ<๐ด,๐‘™0๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—1๎€ธ๐‘š๎€ท๐œ†โˆ—1๎€ธ๐‘ฆ๎€ท๐‘ฅ,๐œ†โˆ—2๎€ธ๐‘š๎€ท๐œ†โˆ—2๎€ธ๐‘‘๐‘ฅ=0if๐บโ€ฒ๎€ท๐œ†โˆ—1๎€ธ=๐บ๎…ž๎€ท๐œ†โˆ—2๎€ธ=๐ด.(4.9)
From (4.9), it follows that ๐‘ฆ(๐‘ฅ,๐œ†โˆ—1)/๐‘š(๐œ†โˆ—1)=๐‘ฆ(๐‘ฅ,๐œ†โˆ—2)/๐‘š(๐œ†โˆ—2) for ๐‘ฅโˆˆ[0,๐‘™]. Therefore, ๐‘š(๐œ†โˆ—2)๐‘ฆ(๐‘ฅ,๐œ†โˆ—1)=๐‘š(๐œ†โˆ—1)๐‘ฆ(๐‘ฅ,๐œ†โˆ—2).
Since ๐œ†1โ‰ ๐œ†2, then by (1.1) ๐‘ฆ(๐‘ฅ,๐œ†1)โ‰ก0. The obtained contradictions prove Lemma 4.3.

By Lemmas 4.2 and 4.3 problem (1.1), (1.2a)โ€“(1.2d) can have only one multiple real eigenvalue. From (3.41), we get ๐บ(3)(๐œ†)>0, ๐œ†โˆˆ๐ต, whence it follows that the multiplicity of real eigenvalue of problem (1.1), (1.2a)โ€“(1.2d) does not exceed three.

Theorem 4.4. The boundary value problem (1.1), (1.2a)โ€“(1.2d) for ๐œŽ<0 has only point spectrum, which is countable infinite and accumulates at +โˆž and can thus be listed as ๐œ†๐‘›,๐‘›โ‰ฅ1 with eigenvalues repeated according to algebraic multiplicity and ordered so as to have increasing real parts. Moreover, one of the following occurs.(1)All eigenvalues are real, at that ๐ต1 contains algebraically two (either two simple or one double) eigenvalues, and ๐ต๐‘›, ๐‘›=2,3,โ€ฆ, contain precisely one simple eigenvalues.(2)All eigenvalues are real, at that ๐ต1contains no eigenvalues but, for some ๐‘ โ‰ฅ2, ๐ต๐‘  contains algebraically three (either three simple, or one simple and one double, or one triple) eigenvalues, and ๐ต๐‘›, ๐‘›=2,3,โ€ฆ, ๐‘›โ‰ ๐‘  contain precisely one simple eigenvalue.(3)There are two nonreal eigenvalues appearing as a conjugate pair, at that ๐ต1 contains no eigenvalues, and ๐ต๐‘›, ๐‘›=2,3,โ€ฆ, contain precisely one simple eigenvalue.

Proof. Remember that the eigenvalues of problem (1.1), (1.2a)โ€“(1.2d) are the roots of the equation ๐บ(๐œ†)=๐ด๐œ†+๐ต, where ๐ด=โˆ’(๐‘Ž2+๐‘2)/๐œŽ, ๐ต=โˆ’(๐‘Ž๐‘+๐‘๐‘‘)โงต๐œŽ (see (3.28)). From (3.41), it follows that ๐บ๎…ž๎…ž(๐œ†)>0 for ๐œ†โˆˆ๐ต1; therefore, the function ๐บ(๐œ†) is convex on the interval ๐ต1. By virtue of (3.18) and (3.30), we have lim๐œ†โ†’โˆ’โˆž๎ƒฏโˆ’๐‘Ž๐บ(๐œ†)=๐‘if๐‘โ‰ 0,โˆ’โˆžif๐‘=0,lim๐œ†โ†’๐œ‡๐‘›โˆ’0๐บ(๐œ†)=+โˆž.(4.10)
That is why for each fixed number ๐ด there exists number ๐ต๐ด such that the lines ๐ด๐œ†+๐ต๐ด, ๐œ†โˆˆโ„, touch the graph of function ๐บ(๐œ†) at some point ฬƒ๐œ†โˆˆ๐ต1. Hence, in the interval ๐ต1, (3.28) has two simple roots ๐œ†1<๐œ†2 if ๐ต>๐ต๐ด, one double root ๐œ†1=ฬƒ๐œ† if ๐ต=๐ต๐ด, and no roots if ๐ต<๐ต๐ด.
By (3.29) and (3.30) we have lim๐œ†โ†’๐œ‡๐‘›+0๐บ(๐œ†)=โˆ’โˆž, lim๐œ†โ†’๐œ‡๐‘›โˆ’0๐บ(๐œ†)=+โˆž, ๐‘›โˆˆโ„•. Therefore, (3.28) has at least one solution in the interval ๐ต๐‘›, ๐‘›=2,3,โ€ฆ.
Let ๐ตโ‰ฅ๐ต๐ด. If ๐ต>๐ต๐ด, then ๐บโ€ฒ(๐œ†1)<๐ด, ๐บ๎…ž(๐œ†2)<๐ด; if ๐ต=๐ต๐ด then ๐บ๎…ž(๐œ†1)=๐ด. By (3.29), (3.28) has only simple root ๐œ†๐‘›+1 for ๐ต>๐ต๐ด,๐œ†๐‘› for ๐ต=๐ต๐ด in the interval ๐ต๐‘›, ๐‘›=2,3,โ€ฆ.
Let ๐ต<๐ต๐ด. By Lemma 4.3 either ๐บ๎…ž(๐œ†๐‘›)>๐ด for any ๐œ†๐‘›โˆˆโ„, or there exists ๐‘˜โˆˆโ„• such that ๐น๎…ž(๐œ†๐‘˜)โ‰ค๐ด and ๐น๎…ž(๐œ†๐‘›)>๐ด, ๐‘›โˆˆโ„•โงต{๐‘˜}. Assume that ๐œ†๐‘˜โˆˆ๐ต๐‘ . Obviously, ๐‘ โ‰ฅ2. Choose natural number ๐‘›0 such that the inequalities ๐ด๐‘…๐‘›0||๎€ท+๐ต>0,๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด๎€ธ||>||๐ต๐ด||โˆ’๐ต,๐œ†โˆˆ๐‘†๐‘…๐‘›0,(4.11) are fulfilled; where ๐‘…๐‘›=๐œ๐‘›+๐›ฟ0, ๐œ๐‘›=โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐œ†๐‘›๎‚€๐œ‹2๎‚๐œˆif๐‘=0,๐‘›๐‘Žif๐‘โ‰ 0,๐‘๐œ†>0,๐‘›(๐œˆ0)โˆ’1if๐‘โ‰ 0,๐‘Ž=0,๐‘›๐‘Žโˆ’1if๐‘โ‰ 0,๐‘<0,(4.12)๐›ฟ0 is sufficiently small positive number, and ๐‘†๐‘…๐‘›={๐‘งโˆˆ๐ถโˆฃ|๐‘ง|=๐‘…๐‘›}.
We have ฮ”๐‘†๐‘…๐‘›0arg(๐บ(๐œ†)โˆ’(๐ด๐œ†+๐ต))=ฮ”๐‘†๐‘…๐‘›0๎€ท๎€ทarg๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด๎€ธ๎€ธ+ฮ”๐‘†๐‘…๐‘›0๎ƒฉ๐ตarg1+๐ดโˆ’๐ต๎€ท๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด๎€ธ๎ƒช,(4.13) where ฮ”๐‘†๐‘…๐‘›01arg๐‘“(๐‘ง)=๐‘–๎€œ๐‘†๐‘…๐‘›0๎ƒฉ๐‘“โ€ฒ(๐‘ง)๎ƒช๐‘“(๐‘ง)๐‘‘๐‘ง(4.14) (see [37, Chapterโ€‰โ€‰IV, Sectionโ€‰โ€‰10]). By (4.11) ||||๎€ท๐ต๐ด๎€ธโˆ’๐ต๎€ท๎€ท๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด||||๎€ธ๎€ธ<1,๐œ†โˆˆ๐‘†๐‘…๐‘›0,(4.15) hence, the point ๎€ท๐ต๐œ”=๐ด๎€ธโˆ’๐ต๎€ท๎€ท๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด๎€ธ๎€ธ(4.16) does not go out of circle {|๐œ”|<1}. Therefore, vector ๐‘ค=1+๐œ” cannot turn around the point ๐‘ค=0, and the second summand in (4.13) equals zero. Thus, ฮ”๐‘†๐‘…๐‘›0arg(๐บ(๐œ†)โˆ’(๐ด๐œ†+๐ต))=ฮ”๐‘†๐‘…๐‘›0๎€ท๐บ๎€ทarg(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด.๎€ธ๎€ธ(4.17) By the argument principle (see [37, Chapter IV, Section 10, Theorem 1]) we have 1ฮ”2๐œ‹๐‘†๐‘…๐‘›0๎€ท๎€ทarg๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด=๎“๎€ธ๎€ธ๐œ†๐ด)๐‘›(๐ตโˆˆint๐‘†๐‘…๐‘›0๐œš๎‚€๐œ†(๐ต๐ด)๐‘›๎‚โˆ’๎“๐œ‡๐‘›โˆˆint๐‘†๐‘…๐‘›0๐œš๎€ท๐œ‡๐‘›๎€ธ,(4.18) where ๐œŒ(๐œ†(๐ต๐ด)๐‘›) and ๐œš(๐œ‡๐‘›) are multiplicity of zero ๐œ†(๐ต๐ด)๐‘› and pole ๐œ‡๐‘› of the function ๐บ(๐œ†)โˆ’(๐ด๐œ†+B๐ด), respectively (๐œ†(๐ต๐ด)1=๐œ†(๐ต๐ด)2). Obviously, โˆ‘๐œ†๐ด)๐‘›(๐ตโˆˆint๐‘†๐‘…๐‘›0๐œŒ(๐œ†(๐ต๐ด)๐‘›)=๐‘›0 and โˆ‘๐œ‡๐‘›โˆˆint๐‘†๐‘…๐‘›0๐œŒ(๐œ‡๐‘›)=๐‘›0โˆ’1. Then, by (4.18) we obtain (2๐œ‹)โˆ’1ฮ”๐‘†๐‘…๐‘›0๎€ท๎€ทarg๐บ(๐œ†)โˆ’๐ด๐œ†+๐ต๐ด๎€ธ๎€ธ=1.(4.19) From (4.17) and (4.19) follows the validity of the equality (2๐œ‹)โˆ’1ฮ”๐‘†๐‘…๐‘›0arg(๐บ(๐œ†)โˆ’(๐ด๐œ†+๐ต))=1.(4.20)
Using the argument principle again, by (4.20) we get ๎“๐œ†๐‘›โˆˆint๐‘†๐‘…๐‘›0๐œŒ๎€ท๐œ†๐‘›๎€ธโˆ’๎“๐œ‡๐‘›โˆˆint๐‘†๐‘…๐‘›0๐œš๎€ท๐œ‡๐‘›๎€ธ=1,(4.21) whence it follows that ๎“๐œ†๐‘›โˆˆint๐‘†๐‘…๐‘›0๐œŒ๎€ท๐œ†๐‘›๎€ธ=๐‘›0,(4.22) where ๐œ†๐‘›, ๐‘›โˆˆโ„•, are roots of the equation ๐บ(๐œ†)=๐ด๐œ†+๐ต. From the above-mentioned reasoning, by (4.22) we have ๎“๐œ†๐‘šโˆˆint๐‘†๐‘…๐‘›๐œŒ๎€ท๐œ†๐‘š๎€ธ=๐‘›,๐‘›=๐‘›0,๐‘›0+1,โ€ฆ,(4.23) and, therefore, problem (1.1), (1.2a)โ€“(1.2d) in the interval ๐ต๐‘› for ๐‘›=๐‘›0, ๐‘›0+1,โ€ฆ, has only one simple eigenvalue.
Consider the following two cases.
Case 1. For all real eigenvalues ๐œ†๐‘› of problem (1.1), (1.2a)โ€“(1.2d) the inequalities ๐บโ€ฒ(๐œ†๐‘›)>๐ด, ๐œ†๐‘›โˆˆโ‹ƒโˆž๐‘š=2๐ต๐‘š, are fulfilled. The problem (1.1), (1.2a)โ€“(1.2d) in every interval ๐ต๐‘š, ๐‘š=2,3,โ€ฆ,๐‘›0โˆ’1, has one simple eigenvalue. Hence, problem (1.1), (1.2a)โ€“(1.2d) in the interval (โˆ’โˆž,๐‘†๐‘…๐‘›), ๐‘›โ‰ฅ๐‘›0, has ๐‘›โˆ’2 simple eigenvalues, and hence, by (4.23), this problem in the circle ๐‘†๐‘…๐‘›โŠ‚โ„‚ has one pair of simple nonreal eigenvalues. In this case, the location of the eigenvalues will be in the following form: ๐œ†1,๐œ†2โˆˆโ„‚โงตโ„, ๐œ†2=๐œ†1, Im๐œ†1>0, ๐œ†๐‘›โˆˆ๐ต๐‘›โˆ’1, ๐‘›=3,4,โ€ฆ.Case 2. Let ๐บ๎…ž(๐œ†๐‘˜)โ‰ค๐ด, ๐บ๎…ž(๐œ†๐‘›)>๐ด, ๐‘›โˆˆ๐‘โˆฃ{๐‘˜} and ๐œ†๐‘˜โˆˆ๐ต๐‘ , ๐‘ โ‰ฅ2. By Lemma 4.2 problem (1.1), (1.2a)โ€“(1.2d) has no nonreal eigenvalues. From the above-mentioned reasoning it follows that in each interval ๐ต๐‘›, ๐‘›โ‰ ๐‘˜, ๐‘›=2,3,โ€ฆ, problem (1.1), (1.2a)โ€“(1.2d) has one simple eigenvalue.Subcase 1. Let ๐บ๎…ž(๐œ†๐‘˜)=๐ด,๐บ๎…ž๎…ž(๐œ†๐‘˜)โ‰ 0, that is, the eigenvalue ๐œ†๐‘˜ is a double one (by this ๐œ†๐‘˜=๐œ†๐‘˜+1). Then, from (4.23) it follows that the interval ๐ต๐‘  besides the eigenvalue ๐œ†๐‘˜ contains one more simple eigenvalue: at that it is either ๐œ†๐‘˜โˆ’1 (by this ๐‘˜=๐‘ ) or ๐œ†๐‘˜+2 (by this ๐‘˜=๐‘ โˆ’1). Hence, ๐œ†๐‘›โˆˆ๐ต๐‘›+1, ๐‘›=1,2,โ€ฆ,๐‘ โˆ’2, ๐œ†๐‘ โˆ’1,๐œ†๐‘ ,๐œ†๐‘ +1โˆˆ๐ต๐‘  (by this either ๐œ†๐‘ โˆ’1<๐œ†๐‘ =๐œ†๐‘ +1 or ๐œ†๐‘ โˆ’1=๐œ†๐‘ <๐œ†๐‘ +1), ๐œ†๐‘›โˆˆ๐ต๐‘›โˆ’1, ๐‘›=๐‘ +2,๐‘ +3,โ€ฆ.Subcase 2. Let ๐บ๎…ž(๐œ†๐‘˜)=๐ด, ๐บ๎…ž๎…ž(๐œ†๐‘˜)=0. By (3.41), ๐บ๎…ž๎…ž๎…ž(๐œ†๐‘˜)โ‰ 0. Hence, ๐œ†๐‘˜ is a triple eigenvalue of the problem (1.1), (1.2a)โ€“(1.2d) (by this ๐œ†๐‘˜=๐œ†๐‘˜+1=๐œ†๐‘˜+2). Then, from (4.23) it follows that in the interval ๐ต๐‘  problem (1.1), (1.2a)โ€“(1.2d) has unique triple eigenvalue ๐œ†๐‘˜, and therefore, ๐‘˜=๐‘ โˆ’1. At this ๐œ†๐‘›โˆˆ๐ต๐‘›+1, ๐‘›=1,2,โ€ฆ,๐‘ โˆ’2, ๐œ†๐‘ โˆ’1=๐œ†๐‘ =๐œ†๐‘ +1โˆˆ๐ต๐‘ , ๐œ†๐‘›โˆˆ๐ต๐‘›โˆ’1,๐‘›=๐‘ +2,๐‘ +3,โ€ฆ.Subcase 3. Let ๐บ๎…ž(๐œ†๐‘˜)<๐ด, that is, the eigenvalue ๐œ†๐‘˜ is simple. Then, by (4.23), in the interval ๐ต๐‘ problem (1.1), (1.2) has an eigenvalue ๐œ†๐‘˜ as well as two more simple eigenvalues, which, by Lemma 4.3, are ๐œ†๐‘˜โˆ’1 and ๐œ†๐‘˜+1 (and hence ๐‘˜=๐‘ ). In this case, we have ๐œ†๐‘›โˆˆ๐ต๐‘›+1, ๐‘›=1,2,โ€ฆ,๐‘ โˆ’2, ๐œ†๐‘ โˆ’1,๐œ†๐‘ ,๐œ†๐‘ +1โˆˆ๐ต๐‘  (๐œ†๐‘ โˆ’1<๐œ†๐‘ <๐œ†๐‘ +1), ๐œ†๐‘›โˆˆ๐ต๐‘›โˆ’1, ๐‘›=๐‘ +2,๐‘ +3,โ€ฆ.
Theorem 4.4 is proved.

By Theorem 4.4 we have ๐œš(๐œ†๐‘›)=2, that is, ๐œ†๐‘›=๐œ†๐‘›+1 if ๐‘›=๐‘ โˆ’1 or ๐‘›=๐‘ ; ๐œš(๐œ†๐‘›)=3, that is, ๐œ†๐‘›=๐œ†๐‘›+1=๐œ†๐‘›+2 if ๐‘›=๐‘ โˆ’1 (If assertion (2) in Theorem 4.4 holds, then we set ๐‘ =1).

Let {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1 be a system of eigen- and associated functions corresponding to the eigenvalue system {๐œ†๐‘›}โˆž๐‘›=1 of problem (1.1), (1.2a)โ€“(1.2d), where ๐‘ฆ๐‘›(๐‘ฅ)=๐‘ฆ(๐‘ฅ,๐œ†๐‘›) if ๐œŒ(๐œ†๐‘›)=1; ๐‘ฆ๐‘›(๐‘ฅ)=๐‘ฆ(๐‘ฅ,๐œ†๐‘›), ๐‘ฆ๐‘›+1(๐‘ฅ)=๐‘ฆโˆ—๐‘›+1(๐‘ฅ)+๐‘๐‘›๐‘ฆ๐‘›(๐‘ฅ), ๐‘ฆโˆ—๐‘›+1(๐‘ฅ)=(๐œ•๐‘ฆ(๐‘ฅ,๐œ†๐‘›))/๐œ•๐œ†, ๐‘๐‘› is an arbitrary constant, if ๐œš(๐œ†๐‘›)=2;๐‘ฆ๐‘›(๐‘ฅ)=๐‘ฆ(๐‘ฅ,๐œ†๐‘›), ๐‘ฆ๐‘›+1(๐‘ฅ)=๐‘ฆโˆ—๐‘›+1(๐‘ฅ)+๐‘‘๐‘›๐‘ฆ๐‘›(๐‘ฅ), ๐‘ฆ๐‘›+2(๐‘ฅ)=๐‘ฆโˆ—๐‘›+2(๐‘ฅ)+๐‘‘๐‘›๐‘ฆโˆ—๐‘›+1(๐‘ฅ)+โ„Ž๐‘›๐‘ฆ๐‘›(๐‘ฅ), ๐‘ฆโˆ—๐‘›+2(๐‘ฅ)=๐œ•2๐‘ฆ(๐‘ฅ,๐œ†๐‘›)/2๐œ•๐œ†2, ๐‘‘๐‘›, โ„Ž๐‘› are arbitrary constants, if ๐œŒ(๐œ†๐‘›)=3. Here, ๐‘ฆ๐‘›(๐‘ฅ) is an eigenfunction for ๐œ†๐‘› and ๐‘ฆ๐‘›+1(๐‘ฅ) when ๐œŒ(๐œ†๐‘›)=2; ๐‘ฆ๐‘›+1(๐‘ฅ), ๐‘ฆ๐‘›+2(๐‘ฅ) when ๐œŒ(๐œ†๐‘›)=3 are the associated functions (see [34, Pages 16โ€“20] for more details).

We turn now to the oscillation theorem of the eigenfunctions corresponding to the positive eigenvalues of problem (1.1), (1.2a)โ€“(1.2d) since the eigenfunctions associated with the negative eigenvalues may have an arbitrary number of simple zeros in (0,๐‘™).

Theorem 4.5. For each ๐‘›<๐‘ (resp., ๐‘›>๐‘), ๐‘ฆ๐‘› has ๐‘›โˆ’1 (resp., ๐‘›) zeros in the interval (0,l). Similarly ๐‘ฆ๐‘ , ๐‘ฆ๐‘ +1 both have ๐‘ โˆ’1 (resp., ๐‘ ) zeros if ๐‘ <๐‘ (resp., ๐‘ >๐‘). Finally, if ๐‘โ‰ 0, then each of ๐‘ฆ๐‘ (and ๐‘ฆ๐‘ , ๐‘ฆ๐‘ +1 if ๐‘ =๐‘) has ๐‘โˆ’1โ€‰โ€‰orโ€‰โ€‰๐‘ zeros according to ๐œ†๐‘, ๐œ†๐‘†, ๐œ†๐‘†+1โ‰ค or >โˆ’๐‘‘/๐‘, and if ๐‘=0 and ๐‘ =๐‘, then ๐‘ฆ๐‘ , ๐‘ฆ๐‘ +1 both have ๐‘  zeros.

The proof of this theorem is similar to that of [11, Theorem 4.4] using Lemma 3.12.

5. Asymptotic Formulae for Eigenvalues and Eigenfunctions of the Boundary Value Problem (1.1), (1.2a)โ€“(1.2d)

For ๐‘โ‰ 0, let ๐พ be an integer such that ๐œ†๐‘˜โˆ’1(๐œ‹/2)<๐‘/๐‘Žโ‰ค๐œ†๐‘˜(๐œ‹/2) (interpreting ๐œ†0(๐œ‹/2)=โˆ’โˆž).

Lemma 5.1. The following relations hold for sufficiently large ๐‘›โˆˆโ„•, ๐‘›>๐‘›1=max{๐‘ ,๐‘,๐พ}+2: ๐œ†๐‘›โˆ’2(0)<๐œ†๐‘›<๐œ†๐‘›โˆ’1๎‚€๐œ‹2๎‚<๐œ†๐‘›โˆ’1๐‘Ž(0)if๐‘โ‰ 0,๐‘๐œ†โ‰ค0,๐‘›โˆ’2(0)<๐œ†๐‘›โˆ’1๎‚€๐œ‹2๎‚<๐œ†๐‘›<๐œ†๐‘›โˆ’1๐‘Ž(0)ifcโ‰ 0,๐‘>0or๐‘=0.(5.1)

Proof. Let๐‘Ž๐‘โ‰ 0. Note that the eigenvalues๐œ†๐‘›(0) (resp., ๐œ†๐‘›(๐œ‹/2)), ๐‘›โˆˆโ„•, of problem (1.1), (1.2a)โ€“(1.2c), and (1.2dโ€ฒ๎…ž) for๐›ฟ=0 (resp., for ๐›ฟ=๐œ‹/2) are roots of the equation ๐บ(๐œ†)=โˆ’๐‘Ž/๐‘(resp., ๐บ(๐œ†)=๐‘/๐‘Ž). The equation ๐ด๐œ†+๐ต=โˆ’๐‘Ž/๐‘ (resp., ๐ด๐œ†+๐ต=๐‘/๐‘Ž) has a unique solution ๐œ†=โˆ’๐‘‘/๐‘ (resp., ๐œ†=โˆ’๐‘/๐‘Ž). Since ๐‘›>max{๐‘+2,๐พ+2}, in view of (3.29), ๐บ(๐œ†๐‘›)>max{โˆ’๐‘Ž/๐‘,๐‘/๐‘Ž}. Hence, by (3.23), (3.24), and (3.29), the following relations hold for ๐‘›>๐‘›1: ๐œ‡๐‘›โˆ’2<๐œ†๐‘›โˆ’2๎‚€๐œ‹2๎‚<๐œˆ๐‘›โˆ’2<๐œ†๐‘›โˆ’2(0)<๐œ†๐‘›<๐œ‡๐‘›โˆ’1๐‘Žif๐‘๐œ‡<0,๐‘›โˆ’2<๐œ†๐‘›โˆ’2(0)<๐œˆ๐‘›โˆ’1<๐œ†๐‘›โˆ’1๎‚€๐œ‹2๎‚<๐œ†๐‘›<๐œ‡๐‘›โˆ’1๐‘Žif๐‘>0.(5.2)
Let ๐‘Ž=0. In this case ๐œ‡๐‘›=๐œ†๐‘›(๐œ‹/2), ๐œˆ๐‘›=๐œ†๐‘›(0), ๐‘›โˆˆโ„•. Since ๐‘›>๐‘+2, so ๐บ(๐œ†๐‘›)>0. Then, by the equality ๐บ(๐œ†๐‘›)=๐ด๐œ†๐‘›+๐ต, ๐‘›โˆˆโ„•, we obtain ๐œ†๐‘›โˆ’2๎‚€๐œ‹2๎‚<๐œ†๐‘›โˆ’2(0)<๐œ†๐‘›<๐œ†๐‘›โˆ’1๎‚€๐œ‹2๎‚<๐œ†๐‘›โˆ’1(0),๐‘›>๐‘›1.(5.3) Now let ๐‘=0. In this case ๐œ‡๐‘›=๐œ†๐‘›(0), ๐œˆ๐‘›=๐œ†๐‘›(๐œ‹/2), ๐‘›โˆˆโ„•. Since ๐‘›>๐พ+2, so ๐บ(๐œ†๐‘›)>0. Therefore, using ๐บ(๐œ†๐‘›)=๐ด๐œ†๐‘›+๐ต, we have ๐œ†๐‘›โˆ’2(0)<๐œ†๐‘›โˆ’1๎‚€๐œ‹2๎‚<๐œ†๐‘›<๐œ†๐‘›โˆ’1(0),๐‘›>๐‘›1.(5.4) Relations (5.1) are consequences of relations (5.2)โ€“(5.4).
The proof of Lemma 5.1 is complete.

We define numbers ๐œ’, ๐œ’๐‘›, ๐‘›โˆˆโ„•, as follows:โŽงโŽชโŽจโŽชโŽฉ๐œ’=3(1+๐‘ (๐›ฝ,|๐‘|))4๎‚€๐œ‹if๐›พโˆˆ0,2๎‚„,54โˆ’38๎€ท(โˆ’1)sgn๐›ฝ+(โˆ’1)sgn|๐‘|๎€ธ๐œ’if๐›พ=0,๐‘›=(๐‘›โˆ’๐œ’)๐œ‹๐‘™.(5.5)

Using relations (5.1) and formulas (3.16), (3.17), the following corresponding reasoning [18, Theorem 3.1] can be proved.

Theorem 5.2. The following asymptotic formulae hold: 4โˆš๐œ†๐‘›=๐œ’๐‘›๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,๐‘ฆ๐‘›๎€ท(๐‘ฅ)=๐‘ง๐‘ฅ,๐œ’๐‘›๎€ธ๎€ท๐‘›+๐‘‚โˆ’1๎€ธ,(5.6) where relation (5.6) holds uniformly for ๐‘ฅโˆˆ[0,๐‘™].

6. Necessary and Sufficient Conditions of Basicity of Root Function System of Problem (1.1), (1.2a)โ€“(1.2d)

Note that the element ฬ‚๐‘ฆ๐‘›={๐‘ฆ๐‘›(๐‘ฅ),๐‘š๐‘›}, ๐‘›โˆˆโ„•, of the system {ฬ‚๐‘ฆ๐‘›}โˆž๐‘›=1 of the root vectors of operator ๐ฟ satisfies the relation๐ฟฬ‚๐‘ฆ๐‘›=๐œ†๐‘›ฬ‚๐‘ฆ๐‘›+๐œƒ๐‘›ฬ‚๐‘ฆ๐‘›โˆ’1,(6.1) where ๐œƒ๐‘› equals either 0 (at that ฬ‚๐‘ฆ๐‘› is eigenvector) or 1 (at that ๐œ†๐‘›=๐œ†๐‘›โˆ’1 and ฬ‚๐‘ฆ๐‘› is associated vector) (see, e.g., [38]).

Theorem 6.1. The system of eigen- and associated functions of operator ๐ฟ is a Riesz basis in the space ๐ป.

Proof. Let ๐œ‡ be a regular value of operator ๐ฟ, that is, ๐‘…๐œ‡=(๐ฟโˆ’๐œ‡๐ผ)โˆ’1 exists and a bounded in ๐ป. Then, problem (2.4) is adequate to the following problem of eigenvalues: ๐‘…๐œ‡ฬ‚๐‘ฆ=(๐œ†โˆ’๐œ‡)โˆ’1ฬ‚๐‘ฆ,ฬ‚๐‘ฆโˆˆ๐ท(๐ฟ).(6.2)
By Lemma 2.1,โ€‰โ€‰๐‘…๐œ‡ is a completely continuous ๐ฝ-selfadjoint operator in ฮ 1. Then, in view of [39] the system of the root vectors of operator ๐‘…๐œ‡ (hence of operator ๐ฟ) forms a Riesz basis in ๐ป. Theorem 6.1 is proved.

Let {ฬ‚๐œโˆ—๐‘›}โˆž๐‘›=1, where ฬ‚๐œโˆ—๐‘›={๐œโˆ—๐‘›(๐‘ฅ),๐‘ โˆ—๐‘›}, be a system of the root vectors of operator ๐ฟโˆ—, that is,๐ฟโˆ—ฬ‚๐œโˆ—๐‘›=๐œ†๐‘›ฬ‚๐œโˆ—๐‘›+๐œƒ๐‘›+1ฬ‚๐œโˆ—๐‘›+1.(6.3)

By Lemma 2.2 and relations (6.1), (6.3) we have the following.

Lemma 6.2. ฬ‚๐œโˆ—๐‘›=๐ฝฬ‚๐‘ฆ๐‘›(ฬ‚๐‘ฆ๐‘›={๐‘ฆ๐‘›(๐‘ฅ),๐‘š๐‘›}) ifโ€‰โ€‰๐œš(๐œ†๐‘›)=1; ฬ‚๐œโˆ—๐‘›=๐ฝฬ‚๐‘ฆโˆ—๐‘›+1+ฬƒ๐‘๐‘›๐ฝฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘›+1=๐ฝฬ‚๐‘ฆ๐‘› if ๐œš(๐œ†๐‘›)=2; ฬ‚๐œโˆ—๐‘›=๐ฝฬ‚๐‘ฆโˆ—๐‘›+2+๎‚๐‘‘๐‘›๐ฝฬ‚๐‘ฆโˆ—๐‘›+1๎‚โ„Ž๐‘›๐ฝฬ‚๐‘ฆโˆ—๐‘›,ฬ‚๐œโˆ—๐‘›+1=๐ฝฬ‚๐‘ฆโˆ—๐‘›+1+๎‚๐‘‘๐‘›๐ฝฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘›+2=๐ฝฬ‚๐‘ฆ๐‘›โ€‰โ€‰ifโ€‰โ€‰๐œš(๐œ†๐‘›)=3, where ฬ‚๐‘ฆโˆ—๐‘›+1={๐‘ฆโˆ—๐‘›+1(๐‘ฅ),๐‘šโˆ—๐‘›+1}, ๐‘š๐‘›+1=๐‘šโ€ฒ(๐œ†๐‘›), ฬ‚๐‘ฆโˆ—๐‘›+2={๐‘ฆโˆ—๐‘›+2(๐‘ฅ),๐‘šโˆ—๐‘›+2}, ๐‘šโˆ—๐‘›+2=(1/2)๐‘š๎…ž๎…ž(๐œ†๐‘›), ฬƒ๐‘๐‘›, ๎‚๐‘‘๐‘›, ๎‚โ„Ž๐‘› are arbitrary constants.

Lemma 6.3. Let โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๎€œ๐›ฟ=๐‘™0๐‘ฆ2๐‘›(๐‘ฅ)๐‘‘๐‘ฅ+๐œŽโˆ’1๐‘š2๐‘›๎€ท๐œ†,if๐œŒ๐‘›๎€ธ๎€ท=1,ฬ‚๐‘ฆ๐‘›,ฬ‚๐‘ฆโˆ—๐‘›+1๎€ธฮ 1๎€ท๐œ†,if๐œŒ๐‘›๎€ธโ€–โ€–=2,ฬ‚๐‘ฆโˆ—๐‘›+1โ€–โ€–2ฮ 1๎€ท๐œ†if๐œŒ๐‘›๎€ธ=3,(6.4) where โ€–โ‹…โ€–ฮ 1 is the norm in ฮ 1. Then, ๐›ฟ๐‘›โ‰ 0, ๐‘›โˆˆโ„•.

Proof. By Remark 3.16,โ€‰โ€‰๐‘š๐‘›โ‰ 0 if ฬ‚๐‘ฆ๐‘› is the eigenvector of operator ๐ฟ. If ๐œš(๐œ†๐‘›)=1, then ๐บโ€ฒ(๐œ†๐‘›)โ‰ ๐ด, whence by (3.29), we get ๐›ฟ๐‘›โ‰ 0.
Let ๐œš(๐œ†๐‘›)=2. Then, ๐บ๎…ž(๐œ†๐‘›)=๐ด and ๐บ๎…ž๎…ž(๐œ†๐‘›)โ‰ 0. Differentiating the right-hand side of equality (3.29) on ๐œ†, we obtain ๐บ๎…ž๎…ž2๎€ท๐‘Ž(๐œ†)=2+๐‘2๎€ธ๐‘š2๎‚ป๎€œ(๐œ†)๐‘™0๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐‘ฆ(๐‘ฅ,๐œ†)๐‘š๐œ•๐œ†๐‘‘๐‘ฅโˆ’๎…ž(๐œ†)๎€œ๐‘š(๐œ†)๐‘™0๐‘ฆ2๎‚ผ.(๐‘ฅ,๐œ†)๐‘‘๐‘ฅ(6.5) Assuming ๐œ†=๐œ†๐‘› in (6.5) and taking into account (3.29) and (2.6), we get ๐บ๎…ž๎…ž๎€ท๐œ†๐‘›๎€ธ๎€ท๐‘Ž=22+๐‘2๎€ธ๐‘š๐‘›โˆ’2๎€ท๐‘ฆ๐‘›,๐‘ฆโˆ—๐‘›+1๎€ธฮ 1.(6.6) Since ๐บ๎…ž๎…ž(๐œ†๐‘›)โ‰ 0, from the last equality it follows that ๐›ฟ๐‘›โ‰ 0.
Now let ๐œš(๐œ†๐‘›)=3, that is, ๐บ๎…ž(๐œ†๐‘›)=๐ด and ๐บ๎…ž๎…ž(๐œ†๐‘›)=0, ๐บ๎…ž๎…ž๎…ž(๐œ†๐‘›)โ‰ 0. Differentiating the right-hand side of (6.5) on ๐œ†, we have ๐บ๎…ž๎…ž๎…ž๎€ท๐‘Ž(๐œ†)=22+๐‘2๎€ธ๐‘šโˆ’6๎€œ(๐œ†)๎ƒฏ๎ƒฏ๎ƒฉ๐‘™0๎‚ต๐œ•๐‘ฆ(๐‘ฅ,๐œ†)๎‚ถ๐œ•๐œ†2๎€œ๐‘‘๐‘ฅ+๐‘™0๐œ•๐‘ฆ(๐‘ฅ,๐œ†)2๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐œ†2๎ƒช๐‘‘๐‘ฅ๐‘š(๐œ†)โˆ’๐‘š๎…ž๎€œ(๐œ†)๐‘™0๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐œ†๐‘‘๐‘ฅโˆ’๐‘š๎…ž๎…ž๎€œ(๐œ†)๐‘™0๐‘ฆ2๎‚ผ(๐‘ฅ,๐œ†)๐‘‘๐‘ฅ๐‘š(๐œ†)โˆ’3๐‘š๎…ž๎‚ป๎€œ(๐œ†)๐‘š(๐œ†)๐‘™0๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐‘ฆ(๐‘ฅ,๐œ†)๐œ•๐œ†๐‘‘๐‘ฅโˆ’๐‘š๎…ž๎€œ(๐œ†)๐‘™0๐‘ฆ2,(๐‘ฅ,๐œ†)๐‘‘๐‘ฅ๎‚ผ๎‚ผ(6.7) whence (supposing in that equality ๐œ†=๐œ†๐‘›), we obtain ๐บ๎…ž๎…ž๎…ž๎€ท๐œ†๐‘›๎€ธ๎€ท๐‘Ž=22+๐‘2๎€ธ๐‘š๐‘›โˆ’4๎‚†โ€–โ€–ฬ‚๐‘ฆโˆ—๐‘›+1โ€–โ€–2ฮ 1๎€ท+2ฬ‚๐‘ฆ๐‘›,ฬ‚๐‘ฆโˆ—๐‘›+2๎€ธฮ 1๎‚‡.(6.8) By (6.1) and (6.3), we have ๎€ทฬ‚๐‘ฆ๐‘›,ฬ‚๐‘ฆโˆ—๐‘›+2๎€ธฮ 1=โ€–โ€–ฬ‚๐‘ฆโˆ—๐‘›+1โ€–โ€–2ฮ 1;(6.9) then taking into account (6.8), we get ๐›ฟ๐‘›=โ€–โ€–ฬ‚๐‘ฆโˆ—๐‘›+1โ€–โ€–2ฮ 1=16๎€ท๐‘Ž2+๐‘2๎€ธโˆ’1๐‘š4๐‘›๐บ๎…ž๎…ž๎…ž๎€ท๐œ†๐‘›๎€ธโ‰ 0.(6.10)
Lemma 6.3 is proved.

Lemma 6.4. The elements ฬ‚๐œ๐‘›={๐œ๐‘›(๐‘ฅ),๐‘ ๐‘›} of the system {ฬ‚๐œ๐‘›}โˆž๐‘›=1 conjugated to the system {ฬ‚๐‘ฆ๐‘›}โˆž๐‘›=1 are defined by the equality ฬ‚๐œ๐‘›=๐›ฟ๐‘›โˆ’1ฬ‚๐œโˆ—๐‘›,(6.11) where ฬƒ๐‘๐‘›=โˆ’๐‘๐‘›โˆ’๐›ฟ๐‘›โˆ’1โ€–ฬ‚๐‘ฆโˆ—๐‘›+1โ€–2ฮ 1 if ๐œš(๐œ†๐‘›)=2; ๎‚๐‘‘๐‘›=โˆ’๐‘‘๐‘›โˆ’๐›ฟ๐‘›โˆ’1(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)ฮ 1, ๎‚โ„Ž๐‘›=โˆ’โ„Ž๐‘›โˆ’๐›ฟ๐‘›โˆ’1โ€–ฬ‚๐‘ฆโˆ—๐‘›+2โ€–2ฮ 1+๐›ฟ๐‘›โˆ’2(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)2ฮ 1+๐‘‘๐‘›(๐‘‘๐‘›+๐›ฟ๐‘›โˆ’1(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)ฮ 1) if ๐œš(๐œ†๐‘›)=3.

Proof. On the bases of (6.1), (6.3), (2.1), (2.6), and (6.9), we have ๎€ทฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘›๎€ธ=๐›ฟ๐‘›๎€ท๐œ†if๐œš๐‘›๎€ธ๎€ท=1;ฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘š๎€ธ๎€ท๐œ†=0if๐œš๐‘›๎€ธ๎€ท๐œ†=๐œš๐‘š๎€ธ๎€ท=1,๐‘›โ‰ ๐‘š;ฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘š๎€ธ๎€ท=0,๐‘š=๐‘˜,๐‘˜+1,ฬ‚๐‘ฆ๐‘˜,ฬ‚๐œโˆ—๐‘˜+1๎€ธ=๎€ทฬ‚๐‘ฆ๐‘˜+1,ฬ‚๐œโˆ—๐‘˜๎€ธ=โ€–โ€–ฬ‚๐‘ฆโˆ—๐‘˜+1โ€–โ€–2ฮ 1+๎€ท๐‘๐‘˜+ฬƒ๐‘๐‘˜๎€ธ๐›ฟ๐‘˜,๎€ทฬ‚๐‘ฆ๐‘˜,ฬ‚๐œโˆ—๐‘˜๎€ธ=๎€ทฬ‚๐‘ฆ๐‘˜+1,ฬ‚๐œโˆ—๐‘˜+1๎€ธ=๐›ฟ๐‘˜๎€ท๐œ†if๐œš๐‘›๎€ธ๎€ท๐œ†=1,๐œš๐‘˜๎€ธ๎€ท=2;ฬ‚๐‘ฆ๐‘›,ฬ‚๐œโˆ—๐‘š๎€ธ๎€ท=0,ฬ‚๐‘ฆ๐‘š,ฬ‚๐œโˆ—๐‘š๎€ธ=๐›ฟ๐‘š๎€ท,๐‘š=๐‘˜,๐‘˜+1,๐‘˜+2,ฬ‚๐‘ฆ๐‘˜,ฬ‚๐œโˆ—๐‘˜+1๎€ธ=๎€ทฬ‚๐‘ฆ๐‘˜+1,ฬ‚๐œโˆ—๐‘˜๎€ธ=๎€ท๐‘ฆโˆ—๐‘˜+1,๐‘ฆโˆ—๐‘˜+2๎€ธฮ 1+๎‚€๐‘‘๐‘˜+๎‚๐‘‘๐‘˜๎‚๐›ฟ๐‘˜,๎€ทฬ‚๐‘ฆ๐‘˜,ฬ‚๐œโˆ—๐‘˜+2๎€ธ=๎€ทฬ‚๐‘ฆ๐‘˜+2,ฬ‚๐œโˆ—๐‘˜๎€ธ=โ€–โ€–ฬ‚๐‘ฆโˆ—๐‘˜+2โ€–โ€–2ฮ 1+๎‚€๐‘‘๐‘˜+๎‚๐‘‘๐‘˜๎‚๎€ทฬ‚๐‘ฆโˆ—๐‘˜+1,ฬ‚๐‘ฆโˆ—๐‘˜+2๎€ธฮ 1+๎‚€๐‘‘๐‘˜๎‚๐‘‘๐‘˜+โ„Ž๐‘˜+๎‚โ„Ž๐‘˜๎‚๐›ฟ๐‘˜๎€ท๐œ†if๐œš๐‘›๎€ธ๎€ท๐œ†=1,๐œš๐‘˜๎€ธ=3.(6.12)
Using relation (6.12) and taking into account (6.11), we get the validity of the equality ๎€ทฬ‚๐‘ฆ๐‘›,ฬ‚๐œ๐‘˜๎€ธ=๐›ฟ๐‘›๐‘˜,(6.13) where ๐›ฟ๐‘›๐‘˜ is the Kronecker delta. The proof of Lemma 6.4 is complete.

Corollary 6.5. (i) If ๐œš(๐œ†๐‘›)=1, then ๐‘ ๐‘›โ‰ 0; (ii) if ๐œš(๐œ†๐‘›)=2, then ๐‘ ๐‘›+1โ‰ 0, ๐‘ ๐‘›โ‰ 0 at ๐‘๐‘›โ‰ ๐‘๐‘›(0), ๐‘ ๐‘›=0at ๐‘๐‘›=๐‘๐‘›(0), where ๐‘๐‘›(0)=๐‘š๐‘›โˆ’1๐‘šโˆ—๐‘›+1โˆ’๐›ฟ๐‘›โˆ’1โ€–ฬ‚๐‘ฆโˆ—๐‘›+1โ€–2ฮ 1; (iii) if ๐œš(๐œ†๐‘›)=3, then ๐‘ ๐‘›+2โ‰ 0, ๐‘ ๐‘›+1โ‰ 0 at ๐‘‘๐‘›โ‰ ๐‘‘๐‘›(0), ๐‘ ๐‘›+1=0 at ๐‘‘๐‘›=๐‘‘๐‘›(0); ๐‘ ๐‘›โ‰ 0 at โ„Ž๐‘›โ‰ โ„Ž๐‘›(0), ๐‘ ๐‘›=0 at โ„Ž๐‘›=โ„Ž๐‘›(0), where ๐‘‘0๐‘›=๐‘š๐‘›โˆ’1๐‘šโˆ—๐‘›+1โˆ’๐›ฟ๐‘›โˆ’1(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)ฮ 1, โ„Ž๐‘›(0)=๐‘š๐‘›โˆ’1๐‘šโˆ—๐‘›+2โˆ’(๐‘‘๐‘›+๐›ฟ๐‘›โˆ’1(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)ฮ 1)(๐‘‘๐‘›โˆ’๐‘š๐‘›โˆ’1๐‘šโˆ—๐‘›+1)โˆ’๐›ฟ๐‘›โˆ’1โ€–ฬ‚๐‘ฆโˆ—๐‘›+2โ€–2ฮ 1+๐›ฟ๐‘›โˆ’2(ฬ‚๐‘ฆโˆ—๐‘›+1,ฬ‚๐‘ฆโˆ—๐‘›+2)2ฮ 1.

Theorem 6.6. Let ๐‘Ÿ be an arbitrary fixed integer. If ๐‘ ๐‘Ÿโ‰ 0, then the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ forms a basis in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž), and even a Riezs basis in ๐ฟ2(0,๐‘™); if ๐‘ ๐‘Ÿ=0, the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is neither complete nor minimal in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž).

Proof. By Theorem 7 in [40, Chapter 1, Section 4] and Theorem 6.1, the system {ฬ‚๐œ๐‘›}โˆž๐‘›=1 is a Riesz basis in ๐ป. Then, for any vector ๐‘“={๐‘“,๐œ‰}โˆˆ๐ป, the following expansion holds: ๎๐‘“={๐‘“,๐œ‰}=โˆž๎“๐‘›=1๎‚€๎๐‘“,ฬ‚๐‘ฆ๐‘›๎‚๐ปฬ‚๐œ๐‘›=โˆž๎“๐‘›=1๎‚€๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2+๐œŽโˆ’1๐œ‰๐‘š๐‘›๎‚๎€ฝ๐œ๐‘›,๐‘ ๐‘›๎€พ,(6.14) whence it follows the equalities ๐‘“=โˆž๎“๐‘›=1๎‚€๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2+๐œŽโˆ’1๐œ‰๐‘š๐‘›๎‚๐œ๐‘›,๐œ‰=โˆž๎“๐‘›=1๎‚€๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2+๐œŽโˆ’1๐œ‰๐‘š๐‘›๎‚๐‘ ๐‘›.(6.15) If ๐œ‰=0, then by (6.15), we have ๐‘“=โˆž๎“๐‘›=1๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2๐œ๐‘›,(6.16)0=โˆž๎“๐‘›=1๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2๐‘ ๐‘›.(6.17)
Let ๐‘ ๐‘Ÿโ‰ 0. Then by (6.17), we obtain ๎€ท๐‘“,๐‘ฆ๐‘Ÿ๎€ธ๐ฟ2=โˆ’๐‘ ๐‘Ÿโˆžโˆ’1๎“๐‘›=1๐‘›โ‰ ๐‘Ÿ๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2๐‘ ๐‘›,(6.18) considering which in (6.16), we get ๐‘“=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘Ÿ๎€ท๐‘“,๐‘ฆ๐‘›๎€ธ๐ฟ2๎€ท๐œ๐‘›โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘›๐œ๐‘Ÿ๎€ธ.(6.19) By (6.13) and (2.1), we have ๎€ท๐‘ฆ๐‘›,๐œ๐‘˜โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘˜๐œ๐‘Ÿ๎€ธ๐ฟ2=๎€ท๐‘ฆ๐‘›,๐œ๐‘˜๎€ธ๐ฟ2โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘˜๎€ท๐‘ฆ๐‘›,๐œ๐‘Ÿ๎€ธ๐ฟ2=๎€ทฬ‚๐‘ฆ๐‘›,ฬ‚๐œ๐‘˜๎€ธ๐ปโˆ’|๐œŽ|โˆ’1๐‘š๐‘›๐‘ ๐‘˜โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘˜๎€ท๐‘ฆ๐‘›,๐œ๐‘Ÿ๎€ธ๐ฟ2+๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘˜|๐œŽ|โˆ’1๐‘š๐‘›๐‘ ๐‘Ÿ=๐›ฟ๐‘›๐‘˜,๐‘›,๐‘˜โ‰ ๐‘Ÿ,(6.20) that is, the system {๐œ๐‘›(๐‘ฅ)โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘›๐œ๐‘Ÿ(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is conjugated to the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ. By virtue of (6.19), the system {๐œ๐‘›(๐‘ฅ)โˆ’๐‘ ๐‘Ÿโˆ’1๐‘ ๐‘›๐œ๐‘Ÿ(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is a Riesz basis in ๐ฟ2(0,๐‘™). Then, on the base of Corollary 2 [40, Chapter 1, Section 4] {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is also in a Riesz basis in ๐ฟ2(0,๐‘™). The basicity of the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ in the space ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž)โงต{2}, can be proved by scheme of the proof of Theorem 5.1 in [18] using Theorem 5.2.
Now let ๐‘ ๐‘Ÿ=0. Then, by (2.1) and (6.13) we have ๎€ท๐‘ฆ๐‘›,๐œ๐‘Ÿ๎€ธ๐ฟ2=๎€ทฬ‚๐‘ฆ๐‘›,ฬ‚๐œ๐‘Ÿ๎€ธ๐ปโˆ’|๐œŽ|โˆ’1๐‘š๐‘›๐‘ ๐‘Ÿ=0,๐‘›โˆˆโ„•,๐‘›โ‰ ๐‘Ÿ.(6.21)
So, the function ๐œ๐œ(๐‘ฅ) is orthogonal to all functions of the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ, that is, the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is incomplete in ๐ฟ2(0,๐‘™).
On the basis of Corollary 6.5 there exists ๐‘˜โˆˆโ„• such that ๐‘ ๐‘˜โ‰ 0 (e.g., if ๐œš(๐œ†๐‘˜)=1). Then, for any ๐‘“(๐‘ฅ)โˆˆ๐ฟ2(0,๐‘™) the following expansion holds: ๐‘“=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜๎€ท๐‘“,๐œ๐‘›โˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๐œ๐‘˜๎€ธ๐ฟ2๐‘ฆ๐‘›.(6.22) By (6.21) and (6.22), we get ๐‘ฆ๐‘˜=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜๎€ท๐‘ฆ๐‘˜,๐œ๐‘›โˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๐œ๐‘˜๎€ธ๐ฟ2๐‘ฆ๐‘›=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜,๐‘Ÿ๎€ท๐‘ฆ๐‘˜,๐œ๐‘›โˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๐œ๐‘˜๎€ธ๐ฟ2๐‘ฆ๐‘›+๎€ท๐‘ฆ๐‘˜,๐œ๐‘Ÿโˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘Ÿ๐œ๐‘˜๎€ธ๐ฟ2๐‘ฆ๐‘Ÿ=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜,๐‘Ÿ๎‚€๎€ท๐‘ฆ๐‘˜,๐œ๐‘›๎€ธ๐ฟ2โˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๎€ท๐‘ฆ๐‘˜,๐œ๐‘˜๎€ธ๐ฟ2๎‚๐‘ฆ๐‘›=โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜,๐‘Ÿ๎‚†๎€ทฬ‚๐‘ฆ๐‘˜,ฬ‚๐œ๐‘›๎€ธ๐ปโˆ’|๐œŽ|โˆ’1๐‘š๐‘˜๐‘ ๐‘›โˆ’๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๎€ทฬ‚๐‘ฆ๐‘˜,ฬ‚๐œ๐‘˜๎€ธ+๐‘ ๐‘˜โˆ’1๐‘ ๐‘›|๐œŽ|โˆ’1๐‘š๐‘˜๐‘ ๐‘˜๎‚‡๐‘ฆ๐‘›=โˆ’โˆž๎“๐‘›=1๐‘›โ‰ ๐‘˜,๐‘Ÿ๐‘ ๐‘˜โˆ’1๐‘ ๐‘›๐‘ฆ๐‘›,(6.23) whence it follows the equality โˆ‘โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ๐‘ ๐‘›๐‘ฆ๐‘›=0, that is, the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ is nonminimal in ๐ฟ2(0,๐‘™).
Obviously, this system is neither complete nor minimal in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž)โงต{2}. The proof of Theorem 6.6 is complete.

Corollary 6.7. If ๐œŽ>0, the system {๐‘ฆ๐‘›(๐‘ฅ)}โˆž๐‘›=1,๐‘›โ‰ ๐‘Ÿ (for any ๐‘Ÿโˆˆโ„•) is a basis in ๐ฟ๐‘(0,๐‘™), ๐‘โˆˆ(1,โˆž), and even a Riesz basis for ๐‘=2.