Abstract

The notion of BRK-algebra is introduced which is a generalization of BCK/BCI/BCH/Q/QS/BM-algebras. The concepts of 𝐺-part, 𝑝-radical, medial of a BRK-algebra are introduced and studied their properties. We proved that the variety of all medial BRK-algebras is congruence permutable and showed that every associative BRK-algebra is a group.

1. Introduction

In 1996, Imai and IsΓ©ki [1] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. These algebras have been extensively studied since their introduction. In 1983, Hu and Li [2] introduced the notion of a BCH-algebra which is a generalization of the notion of BCK and BCI-algebras and studied a few properties of these algebras. In 2001, Neggers et al. [3] introduced a new notion, called a Q-algebra and generalized some theorems discussed in BCI/BCK-algebras. In 2002, Neggers and Kim [4] introduced a new notion, called a B-algebra, and obtained several results. In 2007, Walendziak [5] introduced a new notion, called a BF-algebra, which is a generalization of B-algebra. In [6], C. B. Kim and H. S. Kim introduced BG-algebra as a generalization of B-algebra. We introduce a new notion, called a BRK-algebra, which is a generalization of BCK/BCI/BCH/Q/QS/BM-algebras. The concept of 𝐺-part, 𝑝-radical, and medial of a BRK-algebra are introduced and studied their properties.

2. Preliminaries

First, we recall certain definitions from [2–5, 7, 8] that are required in the paper.

Definition 2.1. A BCI-algebra is an algebra (𝑋,βˆ—,0) of type (2, 0) satisfying the following conditions: (B1)(π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)≀(π‘§βˆ—π‘¦), (B2)π‘₯βˆ—(π‘₯βˆ—π‘¦)≀𝑦,(B3)π‘₯≀π‘₯,(B4)π‘₯≀𝑦and𝑦≀π‘₯implyπ‘₯=𝑦,(B5)π‘₯≀0impliesπ‘₯=0,whereπ‘₯≀𝑦isdefinedbyπ‘₯βˆ—π‘¦=0,forallπ‘₯,𝑦,π‘§βˆˆπ‘‹.

If (B5) is replaced by (B6): 0≀π‘₯, then the algebra is called a BCK-algebra. It is known that every BCK-algebra is a BCI-algebra but not conversely.

Definition 2.2. A BCH-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B4), and (B7): (π‘₯βˆ—π‘¦)βˆ—π‘§=(π‘₯βˆ—π‘§)βˆ—π‘¦.

It is shown that every BCI-algebra is a BCH-algebra but not conversely.

Definition 2.3. A Q-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B7),  and  (B8): π‘₯βˆ—0=π‘₯.

A Q-algebra is said to be a QS-algebra if it satisfies the additional relation:(B9)(π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)=π‘§βˆ—π‘¦,

for any π‘₯,𝑦,π‘§βˆˆπ‘‹. It is shown that every BCH-algebra is a Q-algebra but not conversely.

Definition 2.4. A B-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B8),  and  (B10): (π‘₯βˆ—π‘¦)βˆ—π‘§=π‘₯βˆ—(π‘§βˆ—(0βˆ—π‘¦)).

A B-algebra is said to be 0-commutative if π‘Žβˆ—(0βˆ—π‘)=π‘βˆ—(0βˆ—π‘Ž) for any π‘Ž,π‘βˆˆπ‘‹. In [3], it is shown that Q-algebras and B-algebras are different notions.

Definition 2.5. A BF-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B8), and (B11): 0βˆ—(π‘₯βˆ—π‘¦)=(π‘¦βˆ—π‘₯).

It is shown that every B-algebra is BF-algebra but not conversely.

Definition 2.6. A BM-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B8) and  (B12): (π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)=π‘§βˆ—π‘¦.

Definition 2.7. A BH-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B4), and (B8).

Definition 2.8. A BG-algebra is an algebra (𝑋,βˆ—,0) of type (2,0) satisfying (B3), (B8), and (BG): (π‘₯βˆ—π‘¦)βˆ—(0βˆ—π‘¦)=π‘₯.

3. BRK-Algebras

In this section, we define the notion of BRK-algebra and observe that the axioms in the definition are independent.

Definition 3.1. A BRK-algebra is a nonempty set 𝐴 with a constant 0 and a binary operation βˆ— satisfying axioms:(B8)π‘₯βˆ—0=π‘₯, (B13)(π‘₯βˆ—π‘¦)βˆ—π‘₯=0βˆ—π‘¦foranyπ‘₯,π‘¦βˆˆπ΄.

For brevity, we also call 𝐴 a BRK-algebra. In 𝐴, we can define a binary relation ”≀” by π‘₯≀𝑦 if and only if π‘₯βˆ—π‘¦=0.

Example 3.2. Let 𝐴∢=β„βˆ’{βˆ’π‘›},0β‰ π‘›βˆˆβ„€+ where ℝ is the set of all real numbers and β„€+ is the set of all positive integers. If we define a binary operation βˆ— on 𝐴 by π‘₯βˆ—π‘¦=𝑛(π‘₯βˆ’π‘¦)𝑛+𝑦,(3.1) then (𝐴,βˆ—,0) is an BRK-algebra.

Example 3.3. Let 𝐴={0,1,2} in which βˆ— is defined by βˆ—012002211002200.(3.2) Then (𝐴,βˆ—,0) is a BRK-algebra.

We know that every BCK-algebra is a BCI-algebra and every BCI-algebra is a BCH-algebra and every BCH-algebra is a Q-algebra. We can observe that every Q-algebra is a BRK-algebra but converse needs not be true.

Example 3.4. Let 𝐴={0,1,2,3} in which βˆ— is defined by βˆ—012300101110102210133230.(3.3) Then (𝐴,βˆ—,0) is a BRK-algebra, which is not a BCK/BCI/BCH/Q-algebra.

We know that every QS-algebra is a BM-algebra and we can observe that every BM-algebra is a BRK-algebra but converses need not be true.

Example 3.5. Let 𝐴={0,1,2,3} in which βˆ— is defined by βˆ—012300220110022200233110.(3.4) Then (𝐴,βˆ—,0) is a BRK-algebra, which is not a QS/BM-algebra.

It is easy to see that B/BG/BF/BH-algebra and BRK-algebras are different notions. For example, Example 3.3 is a BRK-algebra which is not a BH-algebra and Example 3.4 is an BRK-algebra which is not B/BG/BF-algebra. Consider the following example. Let 𝐴={0,1,2,3,4,5} be a set with the following table:βˆ—012345002134511024532210534334502144531025534210.(3.5) Then (𝐴,βˆ—,0) is a B/BF/BG/BH-algebra which is not an BRK-algebra.

We observe that the two axioms (B8) and (B13) are independent. Let 𝐴={0,1,2} be a set with the following left table:βˆ—012001211122212βˆ—012001011012010.(3.6) Then the axiom (B8) holds but not (B13), since (1βˆ—2)βˆ—1=2βˆ—1=1β‰ 2=0βˆ—2. Similarly, the set 𝐴={0,1,2} with the above right table satisfies the axiom (B13) but not (B8), since 2βˆ—0=0β‰ 2.

Proposition 3.6. If (𝐴,βˆ—,0) is a BRK-algebra, then, for any π‘₯,π‘¦βˆˆπ΄, the following conditions hold: (1)π‘₯βˆ—π‘₯=0,(2)π‘₯βˆ—π‘¦=0β‡’0βˆ—π‘₯=0βˆ—π‘¦.

Proof. Let (𝐴,βˆ—,0) be a BRK-algebra and π‘₯,π‘¦βˆˆπ΄. Then(1)π‘₯βˆ—π‘₯=(π‘₯βˆ—0)βˆ—π‘₯=0βˆ—0=0 (by B8 and B13),(2)π‘₯βˆ—π‘¦=0β‡’(π‘₯βˆ—π‘¦)βˆ—π‘₯=0βˆ—π‘₯β‡’0βˆ—π‘¦=0βˆ—π‘₯.

Proposition 3.7. Every BRK-algebra A satisfies the following property: 0βˆ—(π‘₯βˆ—π‘¦)=(0βˆ—π‘₯)βˆ—(0βˆ—π‘¦),(3.7) for any π‘₯,π‘¦βˆˆπ΄.

Proof. Let π‘₯,π‘¦βˆˆπ΄. Then ξ€·0βˆ—(π‘₯βˆ—π‘¦)=((0βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘¦))βˆ—(0βˆ—π‘¦)byB13ξ€Έ=[]ξ€·((π‘₯βˆ—π‘¦)βˆ—π‘₯)βˆ—(π‘₯βˆ—π‘¦)βˆ—(0βˆ—π‘¦)byB13ξ€Έ=(0βˆ—π‘₯)βˆ—(0βˆ—π‘¦).(3.8)

Theorem 3.8. Every BRK-algebra 𝐴 satisfying π‘₯βˆ—(π‘₯βˆ—π‘¦)=π‘₯βˆ—π‘¦ for all π‘₯,π‘¦βˆˆπ΄ is a trivial algebra.

Proof. Putting π‘₯=𝑦 in the equation π‘₯βˆ—(π‘₯βˆ—π‘¦)=π‘₯βˆ—π‘¦, we obtain π‘₯βˆ—0=0β‡’π‘₯=0. Hence, 𝐴 is a trivial algebra.

Theorem 3.9. Every BRK-algebra 𝐴 satisfying (π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)=π‘§βˆ—π‘¦ for all π‘₯,𝑦,π‘§βˆˆπ΄ is a BCI-algebra.

Proof. Let (𝐴,βˆ—,0) be a BRK-algebra and (π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)=π‘§βˆ—π‘¦ for all π‘₯,𝑦,π‘§βˆˆπ΄. Then(1)(π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘§)βˆ—(π‘§βˆ—π‘¦)=(π‘§βˆ—π‘¦)βˆ—(π‘§βˆ—π‘¦)=0, (2)(π‘₯βˆ—(π‘₯βˆ—π‘¦))βˆ—π‘¦=((π‘₯βˆ—0)βˆ—(π‘₯βˆ—π‘¦))βˆ—π‘¦=(π‘¦βˆ—0)βˆ—π‘¦=π‘¦βˆ—π‘¦=0, (3)π‘₯βˆ—π‘₯=0,(4)Let π‘₯βˆ—π‘¦=0=π‘¦βˆ—π‘₯. Then π‘₯=π‘₯βˆ—0=π‘₯βˆ—(π‘₯βˆ—π‘¦)=(π‘₯βˆ—0)βˆ—(π‘₯βˆ—π‘¦)=π‘¦βˆ—0=𝑦,(5)π‘₯βˆ—0=0β‡’π‘₯=0.

Theorem 3.10. Every 0-commutative B-algebra is a BRK-algebra.

Proof. Let 𝐴 be a 0-commutative B-algebra. Then π‘₯βˆ—(π‘₯βˆ—π‘¦)=𝑦 for all π‘₯,π‘¦βˆˆπ΄. Hence, (π‘₯βˆ—π‘¦)βˆ—π‘₯=π‘₯βˆ—(π‘₯βˆ—(0βˆ—π‘¦))=0βˆ—π‘¦.

The following theorem can be proved easily.

Theorem 3.11. Let (A,βˆ—,0) be a BRK-algebra. Then, for any x,y∈A, the following conditions hold.(1)If (π‘₯βˆ—π‘¦)βˆ—(0βˆ—(0βˆ—π‘¦))=(π‘₯βˆ—π‘¦)βˆ—π‘¦, then 0βˆ—(0βˆ—(0βˆ—π‘¦))=0βˆ—π‘¦.(2)If (π‘₯βˆ—π‘¦)βˆ—(0βˆ—π‘¦)=(π‘₯βˆ—π‘¦)βˆ—π‘¦, then 0βˆ—(0βˆ—π‘¦)=0βˆ—π‘¦.(3)If π‘₯βˆ—(π‘¦βˆ—π‘₯)=π‘₯βˆ—(0βˆ—(π‘₯βˆ—π‘¦)), then 0βˆ—(π‘¦βˆ—π‘₯)=0βˆ—(0βˆ—(π‘₯βˆ—π‘¦)).

4. 𝐺-Part of BRK-Algebras

In this section, we define 𝐺-part, 𝑝-radical and medial of a BRK-algebra. We give a necessary and sufficient condition for a BRK-algebra to become a medial BRK-algebra and investigate the properties of 𝐺-part in BRK-algebras.

Definition 4.1. A nonempty subset 𝐼 of a BRK-algebra 𝐴 is called a subalgebra of 𝐴 if π‘₯βˆ—π‘¦βˆˆπΌ whenever π‘₯,π‘¦βˆˆπΌ.

Definition 4.2. A nonempty subset 𝐼 of a BRK-algebra 𝐴 is called an ideal of 𝐴 if for any π‘₯,π‘¦βˆˆπ΄:(i)0∈𝐼, (ii)π‘₯βˆ—π‘¦βˆˆπΌ and π‘¦βˆˆπΌ imply π‘₯∈𝐼.

Obviously, {0} and 𝐴 are ideals of 𝐴. We call {0} and 𝐴 the zero ideal and the trivial ideal of 𝐴, respectively. An ideal 𝐼 is said to be proper if 𝐼≠𝐴.

Definition 4.3. An ideal 𝐼 of a BRK-algebra 𝐴 is called a closed ideal of 𝐴 if 0βˆ—π‘₯∈𝐼 for all π‘₯∈𝐼.

Example 4.4. Let 𝐴={0,1,2} in which βˆ— is defined by βˆ—012002211002200.(4.1) Then (𝐴,βˆ—,0) is a BRK-algebra and the set 𝐼={0,2} is a subalgebra, an ideal, and a closed ideal of 𝐴.

Definition 4.5. Let 𝐴 be a BRK-algebra. For any subset 𝑆 of 𝐴, we define 𝐺(𝑆)={π‘₯βˆˆπ‘†βˆ£0βˆ—π‘₯=π‘₯}.(4.2) In particular, if 𝑆=𝐴, then we say that 𝐺(𝐴) is the 𝐺-part of a BRK-algebra.

For any BRK-algebra 𝐴, the set:𝐡(𝐴)={π‘₯∈𝐴∣0βˆ—π‘₯=0}(4.3) is called a 𝑝-radical of 𝐴. Clearly, 𝐡(𝐴) is a subalgebra and an ideal of 𝐴.

A BRK-algebra 𝐴 is said to be 𝑝-semisimple if 𝐡(𝐴)={0}.

The following property is obvious:𝐺(𝐴)∩𝐡(𝐴)={0}.(4.4)

Lemma 4.6. If (𝐴,βˆ—,0) is a BRK-algebra and π‘Žβˆ—π‘=π‘Žβˆ—π‘ for π‘Ž,𝑏,π‘βˆˆπ΄, then 0βˆ—π‘=0βˆ—π‘.

Proof. Let (𝐴,βˆ—,0) be a BRK-algebra and π‘Ž,𝑏,π‘βˆˆπ΄. Then by (B13), π‘Žβˆ—π‘=π‘Žβˆ—π‘β‡’(π‘Žβˆ—π‘)βˆ—π‘Ž=(π‘Žβˆ—π‘)βˆ—π‘Žβ‡’0βˆ—π‘=0βˆ—π‘.

Theorem 4.7. Let (𝐴,βˆ—,0) be a BRK-algebra. Then a left cancellation law holds in 𝐺(𝐴).

Proof. Let π‘Ž,𝑏,π‘βˆˆπΊ(𝐴) with π‘Žβˆ—π‘=π‘Žβˆ—π‘. Then, by Lemma 4.6,  0βˆ—π‘=0βˆ—π‘. Since 𝑏,π‘βˆˆπΊ(𝐴), we obtain 𝑏=𝑐.

Proposition 4.8. Let (𝐴,βˆ—,0) be a BRK-algebra. If π‘₯∈𝐺(𝐴), then 0βˆ—π‘₯∈𝐺(𝐴).

Proof. Let π‘₯∈𝐺(𝐴). Then 0βˆ—π‘₯=π‘₯ and hence 0βˆ—(0βˆ—π‘₯)=0βˆ—π‘₯. Therefore, 0βˆ—π‘₯∈𝐺(𝐴).

Converse of the above proposition needs not be true. From Example 4.4, we can see that 0βˆ—1=2∈{0,2}=𝐺(𝐴) but 1βˆ‰πΊ(𝐴).

Theorem 4.9. If π‘₯,π‘¦βˆˆπΊ(𝐴), then π‘₯βˆ—π‘¦βˆˆπΊ(𝐴).

Proof. Let π‘₯,π‘¦βˆˆπΊ(𝐴). Then 0βˆ—π‘₯=π‘₯ and 0βˆ—π‘¦=𝑦. Hence, 0βˆ—(π‘₯βˆ—π‘¦)=(0βˆ—π‘₯)βˆ—(0βˆ—π‘¦)=π‘₯βˆ—π‘¦. Therefore, π‘₯βˆ—π‘¦βˆˆπΊ(𝐴).

Proposition 4.10. If (𝐴,βˆ—,0) is a BRK-algebra and π‘₯,π‘¦βˆˆπ΄, then π‘¦βˆˆπ΅(𝐴)⟺(π‘₯βˆ—π‘¦)βˆ—π‘₯=0.(4.5)

Proof. Let (𝐴,βˆ—,0) be a BRK-algebra and π‘₯,π‘¦βˆˆπ΄. Then, by (B13),β€‰β€‰π‘¦βˆˆπ΅(𝐴)⇔0βˆ—π‘¦=0⇔(π‘₯βˆ—π‘¦)βˆ—π‘₯=0.

Theorem 4.11. If 𝑆 is a subalgebra of a BRK- algebra (𝐴,βˆ—,0), then 𝐺(𝐴)βˆ©π‘†=𝐺(𝑆).

Proof. Clearly, 𝐺(𝐴)βˆ©π‘†βŠ†πΊ(𝑆). If π‘₯∈𝐺(𝑆), then 0βˆ—π‘₯=π‘₯ and π‘₯βˆˆπ‘†βŠ†π΄. Hence, π‘₯∈𝐺(𝐴). Therefore, π‘₯∈𝐺(𝐴)βˆ©π‘†. Thus, 𝐺(𝐴)βˆ©π‘†=𝐺(𝑆).

Theorem 4.12. Let (𝐴,βˆ—,0) be a BRK- algebra. If 𝐺(𝐴)=𝐴, then 𝐴 is 𝑝-semisimple.

Proof. Assume that 𝐺(𝐴)=𝐴. Then {0}=𝐺(𝐴)∩𝐡(𝐴)=𝐴∩𝐡(𝐴)=𝐡(𝐴). Hence, 𝐴 is 𝑝-semisimple.

Theorem 4.13. Every closed ideal of a BRK- algebra is a subalgebra.

Proof. Let 𝐼 be a closed ideal of a BRK-algebra (𝐴,βˆ—,0) and π‘₯,π‘¦βˆˆπΌ. Then 0βˆ—π‘¦βˆˆπΌ. By (B13), (π‘₯βˆ—π‘¦)βˆ—π‘₯=0βˆ—π‘¦βˆˆπΌ. Since 𝐼 is an ideal and π‘₯∈𝐼, we have π‘₯βˆ—π‘¦βˆˆπΌ. So 𝐼 is a subalgebra of 𝐴.

Note that the converse of the above theorem is not true. In Example 3.4, the set {0,1,2} is a subalgebra but not a closed ideal.

Theorem 4.14. Let 𝐼 be a subset of a BRK-algebra 𝐴. Then 𝐼 is a closed ideal of 𝐴 if and only if it satisfies (i) 0∈𝐼 (ii) π‘₯βˆ—π‘§βˆˆπΌ,π‘¦βˆ—π‘§βˆˆπΌ and π‘§βˆˆπΌ imply π‘₯βˆ—π‘¦βˆˆπΌ, for all π‘₯,𝑦,π‘§βˆˆπ΄.

Proof. Let 𝐼 be a closed ideal of 𝐴. Clearly, 0∈𝐼. Assume that π‘₯βˆ—π‘§,π‘¦βˆ—π‘§,π‘§βˆˆπΌ. Since 𝐼 is an ideal, we have π‘₯,π‘¦βˆˆπΌ which implies that π‘₯βˆ—π‘¦βˆˆπΌ because 𝐼 is a closed ideal and hence a subalgebra of 𝐴. Conversely, assume that 𝐼 satisfies (i) and (ii). Let π‘₯βˆ—π‘¦,π‘¦βˆˆπΌ. Since 0βˆ—0,π‘¦βˆ—0,0∈𝐼, by (ii) we have 0βˆ—π‘¦βˆˆπΌ. From (ii), again it follows that π‘₯=π‘₯βˆ—0∈𝐼 so that 𝐼 is an ideal of 𝐴. Now suppose that π‘₯∈𝐼. Since 0βˆ—0,π‘₯βˆ—0,0∈𝐼, we obtain 0βˆ—π‘₯∈𝐼 by (ii). This completes the proof.

Definition 4.15. A BRK-algebra (𝐴,βˆ—,0) is said to be positive implicative if ((π‘₯βˆ—π‘¦)βˆ—π‘¦)βˆ—(0βˆ—π‘¦)=π‘₯βˆ—π‘¦(4.6) for all π‘₯,π‘¦βˆˆπ΄.

The BRK-algebra in Example 3.3 is positive implicative.

Definition 4.16. Let (𝐴,βˆ—,0) be a BRK-algebra. For a fixed π‘Žβˆˆπ΄. The map π‘…π‘ŽβˆΆπ΄β†’π΄ given by π‘…π‘Ž(𝑦)=π‘¦βˆ—π‘Ž for all π‘¦βˆˆπ΄ is called right translation of 𝐴. Similarly the map πΏπ‘ŽβˆΆπ΄β†’π΄ given by πΏπ‘Ž(𝑦)=π‘Žβˆ—π‘¦ for all π‘¦βˆˆπ΄ is called a left translation of 𝐴.

Definition 4.17. Let (𝐴,βˆ—,0) be a BRK-algebra. For a fixed π‘Žβˆˆπ΄. The map π‘‡π‘ŽβˆΆπ΄β†’π΄ given by π‘‡π‘Ž(𝑦)=(π‘¦βˆ—π‘Ž)βˆ—(0βˆ—π‘Ž) for all π‘¦βˆˆπ΄ is called a weak right translation of 𝐴. Similarly, the map π‘€π‘ŽβˆΆπ΄β†’π΄ given by π‘€π‘Ž(𝑦)=(π‘Žβˆ—π‘¦)βˆ—(0βˆ—π‘¦) for all π‘¦βˆˆπ΄ is called a weak left translation of 𝐴.

Theorem 4.18. A BRK-algebra (𝐴,βˆ—,0) is positive implicative if and only if 𝑅𝑧=π‘‡π‘§βˆ˜π‘…π‘§ for all π‘§βˆˆπ΄.

Proof. Let 𝐴 be a BRK-algebra and 𝑅𝑧=π‘‡π‘§βˆ˜π‘…π‘§ for π‘§βˆˆπ΄. Then π‘¦βˆ—π‘§=𝑅𝑧𝑇(𝑦)=π‘§βˆ˜π‘…π‘§ξ€Έ(𝑦)=𝑇𝑧𝑅𝑧(𝑦)=𝑇𝑧(π‘¦βˆ—π‘§)=((π‘¦βˆ—π‘§)βˆ—π‘§)βˆ—(0βˆ—π‘§),βˆ€π‘¦,π‘§βˆˆπ΄.(4.7) Hence, 𝐴 is positive implicative BRK-algebra. Conversely, assume that 𝐴 is positive implicative BRK-algebra. Let π‘₯,π‘¦βˆˆπ΄. Then 𝑅π‘₯𝑅(𝑦)=π‘¦βˆ—π‘₯=((π‘¦βˆ—π‘₯)βˆ—π‘₯)βˆ—(0βˆ—π‘₯)=π‘₯ξ€Έβˆ—(𝑦)βˆ—π‘₯(0βˆ—π‘₯)=𝑇π‘₯𝑅π‘₯(ξ€Έ=𝑇𝑦)π‘₯βˆ˜π‘…π‘₯ξ€Έ(𝑦).(4.8) Hence, 𝑅π‘₯=𝑇π‘₯βˆ˜π‘…π‘₯.

Definition 4.19. A BRK-algebra (𝐴,βˆ—,0) satisfying (π‘₯βˆ—π‘¦)βˆ—(π‘§βˆ—π‘’)=(π‘₯βˆ—π‘§)βˆ—(π‘¦βˆ—π‘’)(4.9) for any π‘₯,𝑦,𝑧 and π‘’βˆˆπ΄, is called a medial BRK-algebra.

Example 4.20. Let 𝐴∢=β„βˆ’{βˆ’π‘›},0β‰ π‘›βˆˆβ„€+ where ℝ is the set of all real numbers and β„€+ is the set of all positive integers. If we define a binary operation βˆ— on 𝐴 by π‘₯βˆ—π‘¦=𝑛(π‘₯βˆ’π‘¦)𝑛+𝑦,(4.10) then (𝐴,βˆ—,0) is a medial BRK-algebra.

Theorem 4.21. If 𝐴 is a medial BRK-algebra, then, for any π‘₯,𝑦,π‘§βˆˆπ΄, the following hold:(i)π‘₯βˆ—(π‘¦βˆ—π‘§)=(π‘₯βˆ—π‘¦)βˆ—(0βˆ—π‘§),(ii)(π‘₯βˆ—π‘¦)βˆ—π‘§=(π‘₯βˆ—π‘§)βˆ—π‘¦.

Proof. Let 𝐴 be a medial BRK-algebra and π‘₯,𝑦,π‘§βˆˆπ΄. Then(i)(π‘₯βˆ—π‘¦)βˆ—(0βˆ—π‘§)=(π‘₯βˆ—0)βˆ—(π‘¦βˆ—π‘§)=π‘₯βˆ—(π‘¦βˆ—π‘§),(ii)(π‘₯βˆ—π‘¦)βˆ—π‘§=(π‘₯βˆ—π‘¦)βˆ—(π‘§βˆ—0)=(π‘₯βˆ—π‘§)βˆ—(π‘¦βˆ—0)=(π‘₯βˆ—π‘§)βˆ—π‘¦.

By the above theorem, the following corollary follows.

Corollary 4.22. Every medial BRK-algebra is a Q-algebra.

Theorem 4.23. Let 𝐴 be a medial BRK-algebra. Then the right cancellation law holds in 𝐺(𝐴).

Proof. Let π‘Ž,𝑏,π‘₯∈𝐺(𝐴) with π‘Žβˆ—π‘₯=π‘βˆ—π‘₯. Then, for any π‘¦βˆˆπΊ(𝐴),π‘₯βˆ—π‘¦=(0βˆ—π‘₯)βˆ—π‘¦=(0βˆ—π‘¦)βˆ—π‘₯=π‘¦βˆ—π‘₯. Therefore, π‘Ž=0βˆ—π‘Ž=(π‘₯βˆ—π‘Ž)βˆ—π‘₯=(π‘Žβˆ—π‘₯)βˆ—π‘₯=(π‘βˆ—π‘₯)βˆ—π‘₯=(π‘₯βˆ—π‘)βˆ—π‘₯=0βˆ—π‘=𝑏.(4.11)

Now, we give a necessary and sufficient condition for a BRK-algebra to become a medial BRK-algebra.

Theorem 4.24. A BRK-algebra 𝐴 is medial if and only if it satisfies:(i)π‘₯βˆ—π‘¦=0βˆ—(π‘¦βˆ—π‘₯)forallπ‘₯,π‘¦βˆˆπ΄, (ii)(π‘₯βˆ—π‘¦)βˆ—π‘§=(π‘₯βˆ—π‘§)βˆ—π‘¦forallπ‘₯,𝑦,π‘§βˆˆπ΄.

Proof. Suppose (𝐴,βˆ—,0) is medial and π‘₯,𝑦,π‘§βˆˆπ΄. Then(i)0βˆ—(π‘¦βˆ—π‘₯)=(π‘₯βˆ—π‘₯)βˆ—(π‘¦βˆ—π‘₯)=(π‘₯βˆ—π‘¦)βˆ—(π‘₯βˆ—π‘₯)=(π‘₯βˆ—π‘¦)βˆ—0=π‘₯βˆ—π‘¦, (ii)(π‘₯βˆ—π‘¦)βˆ—π‘§=(π‘₯βˆ—π‘¦)βˆ—(π‘§βˆ—0)=(π‘₯βˆ—π‘§)βˆ—(π‘¦βˆ—0)=(π‘₯βˆ—π‘§)βˆ—π‘¦. Conversely, assume that the conditions hold. Then (π‘₯βˆ—π‘¦)βˆ—(π‘§βˆ—π‘’)=0βˆ—((π‘§βˆ—π‘’)βˆ—(π‘₯βˆ—π‘¦))(by(i))=0βˆ—((π‘§βˆ—(π‘₯βˆ—π‘¦))βˆ—π‘’)(by(ii))=(0βˆ—(π‘§βˆ—(π‘₯βˆ—π‘¦)))βˆ—(0βˆ—π‘’)(byProposition3.7)=((π‘₯βˆ—π‘¦)βˆ—π‘§)βˆ—(0βˆ—π‘’)(by(i))=((π‘₯βˆ—π‘§)βˆ—π‘¦)βˆ—(0βˆ—π‘’)(by(ii))=((π‘₯βˆ—π‘§)βˆ—(0βˆ—π‘’))βˆ—π‘¦(by(ii))=(0βˆ—((0βˆ—π‘’)βˆ—(π‘₯βˆ—π‘§)))βˆ—π‘¦(by(i))=(0βˆ—((π‘§βˆ—π‘₯)βˆ—π‘’))βˆ—π‘¦(by(ii)&(i))=(π‘’βˆ—(π‘§βˆ—π‘₯))βˆ—π‘¦(by(i))=(π‘’βˆ—π‘¦)βˆ—(π‘§βˆ—π‘₯)(by(ii))=0βˆ—((π‘§βˆ—π‘₯)βˆ—(π‘’βˆ—π‘¦))(by(i))=(π‘₯βˆ—π‘§)βˆ—(π‘¦βˆ—π‘’)(byProposition3.7and(i))(4.12) Therefore, 𝐴 is medial.

Corollary 4.25. A BRK-algebra 𝐴 is medial if and only if it is a medial QS-algebra.

The following theorem can be proved easily.

Theorem 4.26. An algebra (𝐴,βˆ—,0) of type (2,0) is a medial BRK-algebra if and only if it satisfies: (i)π‘₯βˆ—(π‘¦βˆ—π‘§)=π‘§βˆ—(π‘¦βˆ—π‘₯),(ii)π‘₯βˆ—0=π‘₯,(iii)π‘₯βˆ—π‘₯=0.

Corollary 4.27. If 𝐴 is a medial BRK-algebra, then π‘₯βˆ—(π‘₯βˆ—π‘¦)=𝑦 for all π‘₯,π‘¦βˆˆπ΄.

Corollary 4.28. The class of all of medial BRK-algebras forms a variety, written 𝜈(𝑀𝑅).

Proposition 4.29. A variety 𝜈 is congruence-permutable if and only if there is a term 𝑝(π‘₯,𝑦,𝑧) such that πœˆβŠ¨π‘(π‘₯,π‘₯,𝑦)β‰ˆπ‘¦,πœˆβŠ¨π‘(π‘₯,𝑦,𝑦)β‰ˆπ‘₯.(4.13)

Corollary 4.30. The variety 𝜈(𝑀𝑅) is congruence permutable.

Proof. Let 𝑝(π‘₯,𝑦,𝑧)=π‘₯βˆ—(π‘¦βˆ—π‘§). Then by Corollary 4.25 and (B8), we have 𝑝(π‘₯,π‘₯,𝑦)=𝑦 and 𝑝(π‘₯,𝑦,𝑦)=π‘₯, and so the variety 𝜈(𝑀𝑅) is congruence permutable.

The following example shows that a BRK-algebra may not satisfy the associative law.

Example 4.31. Let 𝐴={0,1,2} be a set with the following table: βˆ—012002211002200.(4.14) Then (𝐴,βˆ—,0) is a BRK-algebra, but associativity does not hold since (1βˆ—2)βˆ—1=0βˆ—1=2β‰ 1=1βˆ—0=1βˆ—(2βˆ—1).

Theorem 4.32. If 𝐴 is an associative BRK-algebra, then, for any π‘₯∈𝐡(𝐴),  π‘₯=0.

Proof. Let π‘₯∈𝐡(𝐴). Then 0=0βˆ—π‘₯=(π‘₯βˆ—π‘₯)βˆ—π‘₯=π‘₯βˆ—(π‘₯βˆ—π‘₯)=π‘₯βˆ—0=π‘₯.

Theorem 4.33. If 𝐴 is an associative BRK-algebra, then 𝐺(𝐴)=𝐴.

Proof. Let 𝐴 be an associative BRK-algebra. Clearly, 𝐺(𝐴)βŠ†π΄. Let π‘₯∈𝐴. Then 0βˆ—π‘₯=(π‘₯βˆ—π‘₯)βˆ—π‘₯=π‘₯βˆ—(π‘₯βˆ—π‘₯)=π‘₯βˆ—0=π‘₯. Hence, π‘₯∈𝐺(𝐴). Therefore, 𝐺(𝐴)=𝐴.

Now, we prove that every associative BRK-algebra is a group.

Theorem 4.34. Every BRK-algebra (𝐴,βˆ—,0) satisfying the associative law is a group under the operation β€βˆ—β€.

Proof. Putting π‘₯=𝑦=𝑧 in the associative law (π‘₯βˆ—π‘¦)βˆ—π‘§=π‘₯βˆ—(π‘¦βˆ—π‘§) and using (B3) and (B8), we obtain 0βˆ—π‘₯=π‘₯βˆ—0=π‘₯. This means that 0 is the zero element of 𝐴. By (B3), every element π‘₯ of 𝐴 has as its inverse the element π‘₯ itself. Therefore, (𝐴,βˆ—) is a group.

5. Conclusion and Future Research

In this paper, we have introduced the concept of BRK-algebra and studied their properties. In addition, we have defined 𝐺-part, 𝑝-radical, and medial of BRK-algebra and proved that the variety of medial algebras is congruence permutable. Finally, we proved that every associative BRK-algebra is a group.

In our future work, we introduce the concept of fuzzy BRK-algebra, interval-valued fuzzy BRK-algebra, intuitionistic fuzzy structure of BRK-algebra, intuitionistic fuzzy ideals of BRK-algebra, and intuitionistic (T,S)-normed fuzzy subalgebras of BRK-algebras, intuitionistic 𝐿-fuzzy ideals of BRK-algebra.

I hope this work would serve as a foundation for further studies on the structure of BRK-algebras.