Abstract

A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.

1. Introduction

In this paper, we develop a quadrature-based Petrov-Galerkin mixed finite element method for the following fourth-order boundary value problem: ๐‘‘2๐‘‘๐‘ฅ2๎‚ธ๐‘‘๐‘Ž(๐‘ฅ)2๐‘ข๐‘‘๐‘ฅ2๎‚น+๐‘(๐‘ฅ)๐‘ข=๐‘“(๐‘ฅ),๐‘ฅโˆˆ๐ผ=(0,1),(1.1) subject to the boundary conditions ๐‘ข(0)=0,๐‘ข(1)=0;๐‘ข๎…ž๎…ž(0)=0,๐‘ข๎…ž๎…ž(1)=0,(1.2) where ๐‘Ž(๐‘ฅ)โ‰ 0,๐‘ฅโˆˆ๐ผ. Let ๐›ผ(๐‘ฅ)=1/๐‘Ž(๐‘ฅ). We, hereafter, suppress the dependency of the independent variable ๐‘ฅ on the functions ๐›ผ(๐‘ฅ), ๐‘(๐‘ฅ), and ๐‘“(๐‘ฅ). Therefore, we write ๐›ผ,๐‘, and ๐‘“ instead of these functions.

Let us define the splitting of the above fourth-order equation as follows.

Set ๐‘ข๎…ž๎…ž=๐›ผ๐‘ฃ,๐‘ฅโˆˆ๐ผ.(1.3) Then the differential equation (1.1) with the boundary conditions (1.2) can be written as a coupled system of equations as follows: ๐‘ข๎…ž๎…ž๐‘ฃ=๐›ผ๐‘ฃ,๐‘ฅโˆˆ๐ผ,with๐‘ข(0)=๐‘ข(1)=0,(1.4)๎…ž๎…ž+๐‘๐‘ข=๐‘“,๐‘ฅโˆˆ๐ผ,with๐‘ฃ(0)=๐‘ฃ(1)=0.(1.5) In this paper, the error analysis will take place in the usual Sobolev space ๐‘Š๐‘š๐‘(๐ผ) defined on the domain ๐ผ=(0,1) with ๐ป๐‘š(๐ผ) denoting ๐‘Š๐‘š2(๐ผ). The Sobolev norms are given below. For an open interval ๐ธ and a non negative integer ๐‘š, โ€–๐‘ฃโ€–๐‘Š๐‘š๐‘(๐ธ)=๎ƒฉ๐‘š๎“๐‘–=0โ€–โ€–๐‘ฃ(๐‘–)โ€–โ€–๐‘๐ฟ๐‘(๐ธ)๎ƒช1/๐‘,if1โ‰ค๐‘<โˆž,=max1โ‰ค๐‘–โ‰ค๐‘›โ€–โ€–๐‘ฃ(๐‘–)โ€–โ€–๐ฟโˆž(๐ธ),if๐‘=โˆž.(1.6) We suppress the dependence of the norms on ๐ผ when ๐ธ=๐ผ. Further, ๐ป๐‘š0(๐ผ) denotes the function space {๐œ™โˆˆ๐ป๐‘š(๐ผ)โˆถ๐œ™(0)=๐œ™(1)=0}.(1.7)

2. Continuous and Discrete ๐ป1-Galerkin Formulation

Given ๐‘›>1, let ฮ ๐‘›โˆถ0=๐‘ฅ0<๐‘ฅ1<โ‹ฏ<๐‘ฅ๐‘›=1(2.1) be an arbitrary partition of [0,1] with the property that โ„Žโ†’0 as ๐‘›โ†’โˆž, where โ„Ž=max1โ‰ค๐‘˜โ‰ค๐‘›โ„Ž๐‘˜ and โ„Ž๐‘˜=๐‘ฅ๐‘˜โˆ’๐‘ฅ๐‘˜โˆ’1,๐‘˜=1,โ€ฆ,๐‘›. Let (๐‘ข,๐‘ฃ) represent the ๐ฟ2 inner product, and let โŸจ๐‘ข,๐‘ฃโŸฉโ„Ž represent the discrete inner product of any two functions ๐‘ข,๐‘ฃโˆˆ๐ฟ2(๐ผ) and be defined as follows: (๎€œ๐‘ข,๐‘ฃ)=๐‘ข๐‘ฃ๐‘‘๐‘ฅ,โŸจ๐‘ข,๐‘ฃโŸฉโ„Ž=๐’ฌโ„Ž(๐‘ข๐‘ฃ),(2.2) where ๐’ฌโ„Ž is the fourth-order Gaussian quadrature rule: ๐’ฌโ„Ž1(๐‘”)โˆถ=2๐‘›๎“๐‘–=1โ„Ž๐‘˜๎€บ๐‘”๎€ท๐‘ฅ๐‘˜,1๎€ธ๎€ท๐‘ฅ+๐‘”๐‘˜,2๎€ธ๎€ป.(2.3) Here, ๐‘ฅ๐‘˜,๐‘–=๐‘ฅ๐‘˜โˆ’1+๐œ‰๐‘–โ„Ž๐‘˜,๐‘–=1,2, are the two Gaussian points in the subinterval [๐‘ฅ๐‘˜โˆ’1,๐‘ฅ๐‘˜] with ๐œ‰1โˆš=(1/2)(1โˆ’1/3), ๐œ‰2=1โˆ’๐œ‰1.

Let us now consider the following cubic spline space as trial space: ๐‘†โ„Ž,3=๎€ฝ๐œ‘โˆˆ๐ถ2(๐ผ)โˆถ๐œ‘|๐ผ๐‘˜โˆˆ๐‘ƒ3๎€ท๐ผ๐‘˜๎€ธ๎€พ,๐‘˜=1,2,โ€ฆ,๐‘›,(2.4) where ๐‘ƒ๐‘Ÿ(๐ผ๐‘˜) is the space of polynomials of degree ๐‘Ÿ defined over the ๐‘˜th subinterval ๐ผ๐‘˜=[๐‘ฅ๐‘˜โˆ’1,๐‘ฅ๐‘˜].

The corresponding space with zero Dirichlet boundary condition is denoted by 0๐‘†โ„Ž,3=๎€ฝ๐œ‘โˆˆ๐‘†โ„Ž,3๎€พโˆถ๐œ‘(0)=๐œ‘(1)=0.(2.5) Further, let us consider the following piecewise linear space ๐‘†โ„Ž,1=๎€ฝ๐œ‘โˆˆ๐ถ(๐ผ)โˆถ๐œ‘|๐ผ๐‘˜โˆˆ๐‘ƒ1๎€ท๐ผ๐‘˜๎€ธ๎€พ,๐‘˜=1,2,โ€ฆ,๐‘›(2.6) as the test space.

2.1. Weak Formulation

The weak formulation corresponding to the split equations (1.4) and (1.5) is defined, respectively, as follows.

Find {๐‘ข,๐‘ฃ}โˆˆ๐ป20(๐ผ) such that ๎€ท๐‘ข๎…ž๎…ž๎€ธ,๐œ™=(๐›ผ๐‘ฃ,๐œ™),๐œ™โˆˆ๐ป2๎€ท๐‘ฃ(0,1),(2.7)๎…ž๎…ž๎€ธ=+๐‘๐‘ข,๐œ™(๐‘“,๐œ™),๐œ™โˆˆ๐ป2(0,1).(2.8)

2.2. The Petrov-Galerkin Formulation

The Petrov-Galerkin formulation corresponding to the above weak formulation (2.7) and (2.8) is defined, respectively, as follows.

Find {๐‘ขโ„Ž,๐‘ฃโ„Ž}โˆˆ0๐‘†โ„Ž,3 such that ๎€ท๐‘ขโ„Ž๎…ž๎…ž,๐œ™โ„Ž๎€ธ=๎€ท๐›ผ๐‘ฃโ„Ž,๐œ™โ„Ž๎€ธ,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1,๎€ท๐‘ฃโ„Ž๎…ž๎…ž+๐‘๐‘ขโ„Ž,๐œ™โ„Ž๎€ธ=๎€ท๐‘“,๐œ™โ„Ž๎€ธ,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1.(2.9) The integrals in the above Petrov-Galerkin formulation are not evaluated exactly at the implementation level. We, therefore, define the following discrete Petrov-Galerkin procedure in which the integrals are replaced by the Gaussian quadrature in the scheme as follows.

2.3. Discrete Petrov-Galerkin Formulation

The discrete Petrov-Galerkin formulation corresponding to (2.7) and (2.8) is defined, respectively, as follows.

Find {๐‘ขโ„Ž,๐‘ฃโ„Ž}โˆˆ0๐‘†โ„Ž,3 such that ๎ซ๐‘ขโ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=โŸจ๐›ผ๐‘ฃโ„Ž,๐œ™โ„ŽโŸฉโ„Ž,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1,๎ซ๐‘ฃ(2.10)โ„Ž๎…ž๎…ž+๐‘๐‘ขโ„Ž,๐œ™โ„Ž๎ฌโ„Ž=โŸจ๐‘“,๐œ™โ„ŽโŸฉโ„Ž,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1.(2.11) The approximate solutions ๐‘ขโ„Ž and ๐‘ฃโ„Ž without any conditions on boundary points are expressed as a linear combination of the B-splines as follows: ๐‘ขโ„Ž(๐‘ฅ)=๐‘›+1๎“๐‘—=โˆ’1๐›พ๐‘—๐ต๐‘—(๐‘ฅ),๐‘ฃโ„Ž(๐‘ฅ)=๐‘›+1๎“๐‘—=โˆ’1๐›ฟ๐‘—๐ต๐‘—(๐‘ฅ),(2.12) where the ๐‘—th basis ๐ต๐‘—(๐‘ฅ) of the cubic B-splines space ๐‘†โ„Ž,3 for ๐‘—=โˆ’1,0,1,2,โ€ฆ,๐‘›,๐‘›+1 is given below: ๐ต๐‘—โŽงโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽฉ(๐‘ฅ)=0,if๐‘ฅโ‰ค๐‘ฅ๐‘—โˆ’2,16โ„Ž3๎€ท๐‘ฅโˆ’๐‘ฅ๐‘—โˆ’2๎€ธ3,if๐‘ฅ๐‘—โˆ’2โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘—โˆ’1,16โ„Ž3๎‚€โ„Ž3+3โ„Ž2๎€ท๐‘ฅโˆ’๐‘ฅ๐‘—โˆ’1๎€ธ๎€ท+3โ„Ž๐‘ฅโˆ’๐‘ฅ๐‘—โˆ’1๎€ธ2๎€ทโˆ’3๐‘ฅโˆ’๐‘ฅ๐‘—โˆ’1๎€ธ3๎‚,if๐‘ฅ๐‘—โˆ’1โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘—,16โ„Ž3๎‚€โ„Ž3+3โ„Ž2๎€ท๐‘ฅ๐‘—+1๎€ธ๎€ท๐‘ฅโˆ’๐‘ฅ+3โ„Ž๐‘—+1๎€ธโˆ’๐‘ฅ2๎€ท๐‘ฅโˆ’3๐‘—+1๎€ธโˆ’๐‘ฅ3๎‚,if๐‘ฅ๐‘—โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘—+1,16โ„Ž3๎€ท๐‘ฅ๐‘—+2๎€ธโˆ’๐‘ฅ3,if๐‘ฅ๐‘—+1โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘—+2,0,if๐‘ฅโ‰ฅ๐‘ฅ๐‘—+2.(2.13)

For ๐‘—=โˆ’1,0 and ๐‘—=๐‘›,๐‘›+1, the basis functions are defined as in the above form, after extending the partition by introducing fictitious nodal points ๐‘ฅโˆ’3,๐‘ฅโˆ’2,๐‘ฅโˆ’1 on the left-hand side and ๐‘ฅ๐‘›+1,๐‘ฅ๐‘›+2,๐‘ฅ๐‘›+3 on the right-hand side, respectively. Further, the ๐‘–th basis ๐œ™๐‘–(๐‘ฅ) of the piecewise linear โ€œhatโ€ splines space ๐‘†โ„Ž,1 for ๐‘–=0,1,2,โ€ฆ,๐‘› is given below: ๐œ™๐‘–(โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ฅ)=0,if๐‘ฅโ‰ค๐‘ฅ๐‘–โˆ’1,1โ„Ž๎€ท๐‘ฅโˆ’๐‘ฅ๐‘–โˆ’1๎€ธ,if๐‘ฅ๐‘–โˆ’1โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘–,1โ„Ž๎€ท๐‘ฅ๐‘–+1๎€ธโˆ’๐‘ฅ,if๐‘ฅ๐‘–โ‰ค๐‘ฅโ‰ค๐‘ฅ๐‘–+1,0,if๐‘ฅโ‰ฅ๐‘ฅ๐‘–+1.(2.14)

In a similar manner, for ๐‘–=0 and ๐‘–=๐‘›, the basis functions are defined as in the above form, after extending the partition by introducing fictitious nodal point ๐‘ฅโˆ’1 on the left-hand side and ๐‘ฅ๐‘›+1 on the right-hand side, respectively. The mixed discrete Petrov-Galerkin method for (2.10) and (2.11) without assuming boundary conditions in the trial space is given as follows: ๐‘›+1๎“๐‘—=โˆ’1๐›พ๐‘—๎ซ๐ต๐‘—๎…ž๎…ž,๐œ™๐‘–๎ฌโ„Žโˆ’๐‘›+1๎“๐‘—=โˆ’1๐›ฟ๐‘—๎ซ๐›ผ๐ต๐‘—,๐œ™๐‘–๎ฌโ„Ž=0,๐‘–=0,1,2,โ€ฆ,๐‘›,๐‘›+1๎“๐‘—=โˆ’1๐›พ๐‘—๎ซ๐‘๐ต๐‘—,๐œ™๐‘–๎ฌโ„Ž+๐‘›+1๎“๐‘—=โˆ’1๐›ฟ๐‘—๎ซ๐ต๐‘—๎…ž๎…ž,๐œ™๐‘–๎ฌโ„Ž=โŸจ๐‘“,๐œ™๐‘–โŸฉโ„Ž,๐‘–=0,1,2,โ€ฆ,๐‘›,(2.15) with the corresponding equations: ๐‘›+1๎“๐‘—=โˆ’1๐›พ๐‘—๐ต๐‘—(0)=0,๐‘›+1๎“๐‘—=โˆ’1๐›พ๐‘—๐ต๐‘—(1)=0,๐‘›+1๎“๐‘—=โˆ’1๐›ฟ๐‘—๐ต๐‘—(0)=0,๐‘›+1๎“๐‘—=โˆ’1๐›ฟ๐‘—๐ต๐‘—(0)=0,(2.16) referring to the zero-boundary conditions: ๐‘ขโ„Ž(0)=0,๐‘ขโ„Ž(1)=0,๐‘ฃโ„Ž(0)=0,๐‘ฃโ„Ž(1)=0.(2.17) The above set of equations (2.15)โ€“(2.16) can be written as a set of 2๐‘›+6 equations in 2๐‘›+6 unknowns. Here, we study the effect of quadrature rule in the error analysis. Since we compute the approximations for the solution ๐‘ข(๐‘ฅ) as well as for its second derivative ๐‘ฃ(๐‘ฅ) with integrals replaced by Gaussian quadrature rule in the formulation, this work may be considered as a quadrature-based mixed Petrov-Galerkin method.

3. Overview of Discrete Petrov-Galerkin Method

Here, the integrals are replaced by composite two-point Gauss rule. Therefore, the resulting method may be described as a โ€œqualocationโ€ approximation, that is, a quadrature-based modification of the collocation method. Further, it may be considered as a Petrov-Galerkin method with a quadrature rule because the test space and trial space are different. Hence, it may be referred to as discrete Petrov-Galerkin method. One practical advantage of this procedure over the orthogonal spline collocation method described in Douglas Jr. and Dupont [1, 2] is that for a given partition there are only half the number of unknowns, and therefore it reduces the size of the matrix.

The qualocation method was first introduced and analysed by Sloan [3] for boundary integral equation on smooth curves. Later on Sloan et al. [4] extended this method to a class of linear second-order two-point boundary value problems and derived optimal error estimates without quasi-uniformity assumption on the finite element mesh. Then, Jones Doss and Pani [5] discussed the qualocation method for a second-order semilinear two-point boundary value problem. Further, Pani [6] expanded its scope by adapting the analysis to a semilinear parabolic initial and boundary value problem in a single space variable. Jones Doss and Pani [7] extended this method to the free boundary problem, that is, one-dimensional single-phase Stefan problem for which part of the boundary has to be found out along with the solution process. A quadrature-based Petrov-Galerkin method applied to higher dimensional boundary value problems is studied in Bialecki et al. [8, 9] and Ganesh and Mustapha [10].

The main idea of this paper is that a quadrature based approximation for a fourth order problem is analyzed in mixed Galerkin setting. The organization of this paper is as follows. In previous Sections 1 and 2, the problem is introduced; the weak and the Galerkin formulations are defined. Overview of discrete Petrov-Galerkin method is discussed in Section 3. Preliminaries required for our analysis are mentioned in Section 4. Error analysis is carried over in Section 5. Throughout this paper ๐ถ is a generic positive constant, whose dependence on the smoothness of the exact solution can be easily determined from the proofs.

4. Preliminaries

We assume that ๐›ผ and ๐‘ are such that ๐›ผ,๐‘โˆˆ๐ถ4๎‚€๐ผ๎‚,(4.1) where ๐ผ=[0,1]. We assume that the problem consisting of the coupled equations (1.4) and (1.5) is uniquely solvable for a given sufficiently smooth function ๐‘“(๐‘ฅ). It can be proved that the quadrature rule in (2.3) has an error bound of the form ๐ธโ„Ž||||๐’ฌ(๐‘”)=โ„Ž๎€œ๐‘”||||(๐‘”)โˆ’โ‰ค๐ถ๐‘›๎“๐‘–=1โ„Ž4๐‘˜โ€–โ€–๐‘”(4)โ€–โ€–๐ฟ1(๐ผ๐‘˜).(4.2) This follows from Peanoโ€™s kernel theorem (see [11]).

The following inequality is frequently used in our analysis. If ๐‘ฃโˆˆ๐‘Š๐‘š๐‘(๐ธ) with ๐‘โˆˆ[1,โˆž], then there exists a positive constant ๐ถ depending only on ๐‘š such that, for any ๐›ฟsatisfying 0<๐›ฟโ‰ค|๐ธ|โ‰ค1,โ€–๐‘ฃโ€–๐‘Š๐‘–๐‘(๐ธ)๎‚ƒ๐›ฟโ‰ค๐ถ๐‘šโˆ’๐‘–โ€–๐‘ฃโ€–๐‘Š๐‘š๐‘(๐ธ)+๐›ฟโˆ’๐‘–โ€–๐‘ฃโ€–๐ฟ๐‘(๐ธ)๎‚„,0โ‰ค๐‘–โ‰ค๐‘šโˆ’1,(4.3) where |๐ธ|denotes the length of ๐ธ. For a detailed proof, one may refer to appendix of Sloan et al. [4] or Chapter 4 of Adams [12]. Let us use the following notation: ๐ฟ๐‘ฃโˆถ=๐‘ฃ๎…ž๎…ž.(4.4) The adjoint operator ๐ฟโˆ— with corresponding adjoint boundary condition is defined as follows: ๐ฟโˆ—๐œ™=๐œ™๎…ž๎…ž,๐œ™(0)=๐œ™(1)=0.(4.5) Since ๐ฟ is a self-adjoint operator, we mention below the regularity of ๐ฟโˆ—(equal to ๐ฟ) in the ๐‘ž norm. We make a stronger assumption as in Sloan et al. [4] that for arbitrary ๐‘žโˆˆ[1,โˆž], there exists a positive constant ๐ถ such that โ€–๐ฟโˆ—๐‘ขโ€–๐ฟ๐‘ž(๐ผ)โ‰ฅ๐ถโ€–๐‘ขโ€–๐‘Š2๐‘ž(๐ผ).(4.6) We have the following inequality due to the Sobolev embedding theorem; the proof of which can be found in page 97, Adams [12], โ€–๐œ™โ€–๐ฟโˆž(๐ผ๐‘˜)โ‰คโ€–๐œ™โ€–๐‘Š1๐‘(๐ผ๐‘˜);1โ‰ค๐‘โ‰คโˆž,๐œ™โˆˆ๐‘Š1๐‘๎€ท๐ผ๐‘˜๎€ธ.(4.7)

5. Convergence Analysis

Hereafter throughout this section, for ๐‘ and ๐‘ž with 1โ‰ค๐‘,๐‘žโ‰คโˆž,sโ€‰โ€‰and ๐‘โˆ’1+๐‘žโˆ’1=1, we use the following notations: โ€–๐‘ฃโ€–0,๐‘=โ€–๐‘ฃโ€–๐ฟ๐‘,โ€–๐‘ฃโ€–๐‘ ,๐‘=โ€–๐‘ฃโ€–๐‘Š๐‘ ๐‘,โ€–๐‘ฃโ€–๐‘ ,๐‘,๐‘˜=โ€–๐‘ฃโ€–๐‘Š๐‘ ๐‘(๐ผ๐‘˜).(5.1) Let us denote the error between ๐‘ข and ๐‘ขโ„Ž by ๐œ€โ„Ž and the error between ๐‘ฃ and ๐‘ฃโ„Ž by ๐‘’โ„Ž, respectively, that is, ๐œ€โ„Ž=๐‘ขโˆ’๐‘ขโ„Ž and ๐‘’โ„Ž=๐‘ฃโˆ’๐‘ฃโ„Ž. Using (2.11) and (1.5), we obtain the following error equations: ๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=๎ซ๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=๎ซ๐‘ฃ๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Žโˆ’โŸจ๐‘“โˆ’๐‘๐‘ขโ„Ž,๐œ™โ„ŽโŸฉโ„Ž๎ซ๐‘๎€ท=โˆ’๐‘ขโˆ’๐‘ขโ„Ž๎€ธ,๐œ™โ„Ž๎ฌโ„Ž=โˆ’โŸจ๐‘๐œ€โ„Ž,๐œ™โ„ŽโŸฉโ„Ž,(5.2) and therefore we get ๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=โˆ’โŸจ๐‘๐œ€โ„Ž,๐œ™โ„ŽโŸฉโ„Ž,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1.(5.3) Further, using (2.10) and (1.4),๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=๎ซ๐‘ข๎…ž๎…žโˆ’๐‘ขโ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=๎ซ๐›ผ๎€ท๐‘ฃโˆ’๐‘ฃโ„Ž๎€ธ,๐œ™โ„Ž๎ฌโ„Ž=โŸจ๐›ผ๐‘’โ„Ž,๐œ™โ„ŽโŸฉโ„Ž,(5.4) and therefore we have ๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=โŸจ๐›ผ๐‘’โ„Ž,๐œ™โ„ŽโŸฉโ„Ž,๐œ™โ„Žโˆˆ๐‘†โ„Ž,1.(5.5) The following lemma gives estimates for the error in the quadrature rule for the term (๐‘’โ„Ž๎…ž๎…ž๐œ’โ„Ž) and (๐œ€โ„Ž๎…ž๎…ž๐œ’โ„Ž) for ๐œ’โ„Žโˆˆ๐‘†โ„Ž,1. These estimates are required for our error analysis later. The proof of the lemma is similar to the proof of Lemmaโ€‰4.2 of Sloan et al. [4].

Lemma 5.1. For all ๐œ’โ„Žโˆˆ๐‘†โ„Ž,1 and h sufficiently small, (a)๐ธโ„Ž(๐‘’โ„Ž๎…ž๎…ž๐œ’โ„Ž)โ‰ค๐ถโ„Ž4โ€–๐‘ฃโ€–6,๐‘โ€–๐œ’โ„Žโ€–1,๐‘ž, (b)๐ธโ„Ž(๐‘’โ„Ž๎…ž๎…ž๐œ’โ„Ž)โ‰ค๐ถโ„Ž3โ€–๐‘ฃโ€–6,๐‘โ€–๐œ’โ„Žโ€–0,๐‘ž, (c)๐ธโ„Ž(๐œ€โ„Ž๎…ž๎…ž๐œ’โ„Ž)โ‰ค๐ถโ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–๐œ’โ„Žโ€–1,๐‘ž, (d)๐ธโ„Ž(๐œ€โ„Ž๎…ž๎…ž๐œ’โ„Ž)โ‰ค๐ถโ„Ž3โ€–๐‘ขโ€–6,๐‘โ€–๐œ’โ„Žโ€–0,๐‘ž.

The following result gives estimate for ๐œ€โ„Ž(๐‘ฅ), where ๐‘ฅ is any arbitrary point in ๐ผ. This estimate is crucial for our error analysis.

Lemma 5.2. Let ๐‘ข be the weak solution of (1.4) defined through (2.7). Further, let ๐‘ขโ„Ž be the corresponding discrete Petrov-Galerkin solution defined through (2.10). Then, the error ๐œ€โ„Ž=๐‘ขโˆ’๐‘ขโ„Ž satisfies ||๐œ€โ„Ž๎€ท๐‘ฅ๎€ธ||๎€บโ„Žโ‰ค๐ถ2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป,(5.6) where ๐‘ฅ is an arbitrary point in [0,1].

Proof. For a given ๐‘ฅโˆˆ[0,1], let ฮฆ be an element of ๐ฟ๐‘โ‹‚(๐ผ)๐ถ(๐ผ) satisfying the following auxiliary problem: ฮฆ๎…ž๎…ž๎€ฝ=0,๐‘ฅโˆˆ๐ผโˆ’๐‘ฅ๎€พ,ฮฆ(0)=ฮฆ(1)=0,ฮฆโ€ฒโˆ’๎€ท๐‘ฅ๎€ธโˆ’ฮฆ๎…ž+๎€ท๐‘ฅ๎€ธ=โˆ’1.(5.7) The above problem has a solution. For example, ๎‚ป๎€ทฮฆ(๐‘ฅ)=๎€ธ๐‘ฅโˆ’1๐‘ฅ,0โ‰ค๐‘ฅโ‰ค๐‘ฅ,๐‘ฅ(๐‘ฅโˆ’1),๐‘ฅโ‰ค๐‘ฅโ‰ค1(5.8) satisfies the above differential equation, the boundary conditions, and the jump condition.
Let us define ฮจ as follows: ๎‚ปฮฆฮจ(๐‘ฅ)=๎…ž๎…ž๎€ฝ,๐‘ฅโˆˆ๐ผโˆ’๐‘ฅ๎€พ,0,at๐‘ฅ=๐‘ฅ.(5.9) Then, ฮจ=0โ€‰โ€‰a.e. on ๐ผ. We first multiply ๐œ€โ„Ž with ฮจ and then integrate over ๐ผ. On applying integration by parts, using the fact that ๐œ€โ„Ž(0)=๐œ€โ„Ž(1)=0 and the jump condition for ฮฆโ€ฒ, we obtain ๎€ท๐œ€0=โ„Ž๎€ธ=๎€œ,ฮจ๐‘ฅ0๐œ€โ„Ž๎€œฮจ+1๐‘ฅ๐œ€โ„Ž๎€œฮจ=๐‘ฅ0๐œ€โ„Žฮฆ๎…ž๎…ž+๎€œ1๐‘ฅ๐œ€โ„Žฮฆ๎…ž๎…ž=๎€บ๐œ€โ„Žฮฆ๎…ž๎€ป๐‘ฅ0โˆ’๎€œ๐‘ฅ0๐œ€๎…žโ„Žฮฆ๎…ž+๎€บ๐œ€โ„Žฮฆ๎…ž๎€ป1๐‘ฅโˆ’๎€œ1๐‘ฅ๐œ€๎…žโ„Žฮฆ๎…ž=๐œ€โ„Ž๎€ท๐‘ฅฮฆ๎€ธ๎€บ๎…žโˆ’๎€ท๐‘ฅ๎€ธโˆ’ฮฆ๎…ž+๎€ท๐‘ฅโˆ’๎€œ๎€ธ๎€ป๐‘ฅ0๐œ€๎…žโ„Žฮฆ๎…žโˆ’๎€œ1๐‘ฅ๐œ€๎…žโ„Žฮฆ๎…ž=โˆ’๐œ€โ„Ž๎€ท๐‘ฅ๎€ธโˆ’๎€œ๐‘ฅ0๐œ€๎…žโ„Žฮฆ๎…žโˆ’๎€œ1๐‘ฅ๐œ€๎…žโ„Žฮฆ๎…ž.(5.10) Applying integration by parts once again, using boundary condition for ฮฆ and the continuity of ฮฆ, we obtain 0=โˆ’๐œ€โ„Ž๎€ท๐‘ฅ๎€ธโˆ’๎ƒฏ๎€บ๐œ€๎…žโ„Žฮฆ๎€ป๐‘ฅ0โˆ’๎€œ๐‘ฅ0๐œ€โ„Ž๎…ž๎…ž๎€บ๐œ€ฮฆ+๎…žโ„Žฮฆ๎€ป1๐‘ฅโˆ’๎€œ1๐‘ฅ๐œ€โ„Ž๎…ž๎…žฮฆ๎ƒฐ=โˆ’๐œ€โ„Ž๎€ท๐‘ฅ๎€ธ+๎€ท๐œ€โ„Ž๎…ž๎…ž๎€ธ,ฮฆ,(5.11) that is, ๐œ€โ„Ž(๐‘ฅ)=(๐œ€โ„Ž๎…ž๎…ž,ฮฆ). Let ฮฆโ„Ž be the linear interpolant of ฮฆ. Then, we have ๐œ€โ„Ž๎€ท๐‘ฅ๎€ธ=๎€ท๐œ€โ„Ž๎…ž๎…ž,ฮฆโˆ’ฮฆโ„Ž๎€ธ+๎€ท๐œ€โ„Ž๎…ž๎…ž,ฮฆโ„Ž๎€ธโˆ’๎ซ๐œ€โ„Ž๎…ž๎…ž,ฮฆโ„Ž๎ฌโ„Ž+๎ซ๐œ€โ„Ž๎…ž๎…ž,ฮฆโ„Ž๎ฌโ„Ž||๐œ€โ„Ž๎€ท๐‘ฅ๎€ธ||โ‰ค||๎€ท๐œ€โ„Ž๎…ž๎…ž,ฮฆโˆ’ฮฆโ„Ž๎€ธ||+||๐ธโ„Ž๎€ท๐œ€โ„Ž๎…ž๎…žฮฆโ„Ž๎€ธ||+||๎ซ๐œ€โ„Ž๎…ž๎…ž,ฮฆโ„Ž๎ฌโ„Ž||โ‰ค๐‘‡1+๐‘‡2+๐‘‡3.(5.12) We know that โ€–โ€–ฮฆโ„Žโ€–โ€–1,๐‘žโ‰คโ€–โ€–ฮฆโˆ’ฮฆโ„Žโ€–โ€–1,๐‘ž+โ€–ฮฆโ€–1,๐‘žโ‰ค๐ถโ„Žโ€–ฮฆโ€–2,๐‘ž+โ€–ฮฆโ€–2,๐‘žโ‰ค๐ถโ€–ฮฆโ€–2,๐‘ž.(5.13) We now compute the estimates for the terms ๐‘‡1, ๐‘‡2, and ๐‘‡3 as follows: ๐‘‡1=||๎€ท๐œ€โ„Ž๎…ž๎…ž,ฮฆโˆ’ฮฆโ„Ž๎€ธ||โ‰คโ€–โ€–๐œ€โ„Ž๎…ž๎…žโ€–โ€–0,๐‘โ€–โ€–ฮฆโˆ’ฮฆโ„Žโ€–โ€–0,๐‘žโ‰ค๐ถโ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘โ€–ฮฆโ€–2,๐‘ž.(5.14) Using Lemma 5.1(c) and (5.13), we obtain ๐‘‡2=||๐ธโ„Ž๎€ท๐œ€โ„Ž๎…ž๎…žฮฆโ„Ž๎€ธ||โ‰ค๐ถโ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–ฮฆโ€–2,๐‘ž.(5.15) Using (5.5), (2.3), and the Sobolev embedding theorem (4.7) locally on ๐ผ๐‘˜ for both โ€–๐‘’โ„Žโ€–0,โˆž,๐‘˜ and โ€–ฮฆโ„Žโ€–0,โˆž,๐‘˜, we have ๐‘‡3=||๎ซ๐œ€โ„Ž๎…ž๎…ž,ฮฆโ„Ž๎ฌโ„Ž||=||โŸจ๐›ผ๐‘’โ„Ž,ฮฆโ„ŽโŸฉโ„Ž||โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐‘’โ„Žโ€–โ€–0,โˆž,๐‘˜โ€–โ€–ฮฆโ„Žโ€–โ€–0,โˆž,๐‘˜โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘,๐‘˜โ€–โ€–ฮฆโ„Žโ€–โ€–1,๐‘ž,๐‘˜.(5.16) Using Hรถlder's inequality for sums and (5.13), we have ๐‘‡3โ€–โ€–๐‘’โ‰ค๐ถโ„Žโ„Žโ€–โ€–1,๐‘โ€–โ€–ฮฆโ„Žโ€–โ€–1,๐‘žโ€–โ€–๐‘’โ‰ค๐ถโ„Žโ„Žโ€–โ€–1,๐‘โ€–ฮฆโ€–2,๐‘ž.(5.17) For ฮฆ satisfying the auxiliary problem, it is easy to verify that โ€–ฮฆโ€–2,๐‘žโ‰ค๐พ, where ๐พ is a constant not depending on โ„Ž.
Using ๐‘‡1, ๐‘‡2, and ๐‘‡3 in (5.12), we have ||๐œ€โ„Ž๎€ท๐‘ฅ๎€ธ||๎€บโ„Žโ‰ค๐ถ2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป.(5.18) This completes the proof.

In the following lemma, we initially compute the error (๐‘ฃโˆ’๐‘ฃโ„Ž) in terms of (๐‘ขโˆ’๐‘ขโ„Ž), and then later on we establish an optimal estimate of error (๐‘ฃโˆ’๐‘ฃโ„Ž) independent of (๐‘ขโˆ’๐‘ขโ„Ž).

Lemma 5.3. Let ๐‘ข and ๐‘ฃ be the weak solutions of the coupled equations (1.4) and (1.5) defined through (2.7) and (2.8), respectively. Further, let ๐‘ขโ„Ž and ๐‘ฃโ„Ž be the corresponding discrete Petrov-Galerkin solutions defined through (2.10) and (2.11), respectively. Then the estimates of the errors ๐‘’โ„Ž=๐‘ฃโˆ’๐‘ฃโ„Ž in ๐ฟ๐‘, ๐‘Š1๐‘, and ๐‘Š2๐‘ norms are given as follows: โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป,โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป,โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป.(5.19)

Proof. Let ๐œ‚ be an arbitrary element of ๐ฟ๐‘ž, and let ๐œ™โˆˆ๐‘Š2๐‘ž be the solution of the auxiliary problem ๐ฟโˆ—๐œ™=๐œ‚,๐œ™(0)=๐œ™(1)=0.(5.20) We now have ๎€ท๐‘’โ„Ž๎€ธ=๎€ท๐‘’,๐œ‚โ„Ž,๐ฟโˆ—๐œ™๎€ธ=๎€ท๐ฟ๐‘’โ„Ž๎€ธ=๎€ท๐‘’,๐œ™โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ+๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎€ธ=๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ+๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎€ธโˆ’๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž+๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž=๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ+๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ™โ„Ž๎€ธ+๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž,||๎€ท๐‘’โ„Ž๎€ธ||โ‰ค||๎€ท๐‘’,๐œ‚โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ||+||๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ™โ„Ž๎€ธ||+||๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž||โ‰ค๐‘‡4+๐‘‡5+๐‘‡6,(5.21) where ๐œ™โ„Žโˆˆ๐‘†โ„Ž,1 is the linear interpolant of ๐œ™.
We know that โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘žโ‰คโ€–โ€–๐œ™โˆ’๐œ™โ„Žโ€–โ€–1,๐‘ž+โ€–๐œ™โ€–1,๐‘žโ‰ค๐ถโ„Žโ€–๐œ™โ€–2,๐‘ž+โ€–๐œ™โ€–2,๐‘žโ‰ค๐ถโ€–๐œ™โ€–2,๐‘ž.(5.22) We shall compute the estimates for the terms ๐‘‡4, ๐‘‡5, and ๐‘‡6 as follows: ๐‘‡4=||๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ||โ‰คโ€–โ€–๐‘’โ„Ž๎…ž๎…žโ€–โ€–0,๐‘โ€–โ€–๐œ™โˆ’๐œ™โ„Žโ€–โ€–0,๐‘žโ‰ค๐ถโ„Ž2โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘โ€–๐œ™โ€–2,๐‘ž,๐‘‡5=||๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ™โ„Ž๎€ธ||โ‰ค๐ถโ„Ž4โ€–๐‘ฃโ€–6,๐‘โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘žโ‰ค๐ถโ„Ž4โ€–๐‘ฃโ€–6,๐‘โ€–๐œ™โ€–2,๐‘žbyLemma5.1(a),(5.22).(5.23) Using (5.3), (2.3), and the Sobolev embedding theorem (4.7) locally on ๐ผ๐‘˜ for โ€–๐œ™โ„Žโ€–0,โˆž,๐‘˜, we have ๐‘‡6=||๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž||=||โˆ’โŸจ๐‘๐œ€โ„Ž,๐œ™โ„ŽโŸฉโ„Ž||โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐œ€โ„Žโ€–โ€–0,โˆž,๐‘˜โ€–โ€–๐œ™โ„Žโ€–โ€–0,โˆž,๐‘˜โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐œ€โ„Žโ€–โ€–0,โˆž,๐‘˜โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘ž,๐‘˜.(5.24) Using Hรถlder's inequality for sums, Lemma 5.2, and (5.22), we obtain ๐‘‡6๎€บโ„Žโ‰ค๐ถโ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘ž๎€บโ„Žโ‰ค๐ถ3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž2โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ปโ€–๐œ™โ€–2,๐‘ž.(5.25) Substituting ๐‘‡4, ๐‘‡5, and ๐‘‡6 in (5.21), we have ||๎€ท๐‘’โ„Ž๎€ธ||๎€บโ„Ž,๐œ‚โ‰ค๐ถ2โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ฃโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž2โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ปโ€–๐œ™โ€–2,๐‘ž.(5.26) Using (4.6) and the regularity of the auxiliary problem, we have โ€–๐œ™โ€–2,๐‘žโ‰ค๐ถโ€–๐œ‚โ€–0,๐‘ž. Since ๐œ‚โˆˆ๐ฟ๐‘ž is arbitrary, we have โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘๎€ทโ„Žโ‰ค๐ถ2โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘๎€ธ.(5.27) We now estimate โ€–๐‘’โ„Ž๎…ž๎…žโ€– via a projection argument. Let ๐‘ƒโ„Ž be the orthogonal projection onto ๐‘†โ„Ž,1 with respect to ๐ฟ2 inner product defined by ๎€ท๐‘ฃ๎…ž๎…žโˆ’๐‘ƒโ„Ž๐‘ฃ๎…ž๎…ž,๐œ“โ„Ž๎€ธ=0,๐œ“โ„Žโˆˆ๐‘†โ„Ž,1.(5.28) The domain of ๐‘ƒโ„Ž may be taken to be ๐ฟ1. From Crouzeix and Thomรฉe [13] and de Boor [14], it is seen that the ๐ฟ2 projection is stable. Thus, โ€–โ€–๐‘ƒโ„Ž๐‘ฃโ€–โ€–0,๐‘โ‰ค๐ถโ€–๐‘ฃโ€–0,๐‘.(5.29) Then the error ๐‘’โ„Ž๎…ž๎…ž can be interpreted in terms of the error of the above projection: โ€–โ€–๐‘’โ„Ž๎…ž๎…žโ€–โ€–0,๐‘=โ€–โ€–๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…žโ€–โ€–0,๐‘โ‰คโ€–โ€–๐‘ฃ๎…ž๎…žโˆ’๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโ€–โ€–0,๐‘+โ€–โ€–๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…žโ€–โ€–0,๐‘.(5.30) From the stability property (5.29), the error in the projection follows as in de Boor [14], that is, โ€–โ€–๐‘ฃ๎…ž๎…žโˆ’๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโ€–โ€–0,๐‘โ‰ค๐ถโ„Ž2โ€–โ€–๐‘ฃ๎…ž๎…žโ€–โ€–2,๐‘โ‰ค๐ถโ„Ž2โ€–๐‘ฃโ€–4,๐‘.(5.31) Then the remaining task is to compute the estimate of โ€–๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…žโ€–0,๐‘.
For ๐œ“โ„Žโˆˆ๐‘†โ„Ž,1, ๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ=๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃ๎…ž๎…ž+๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ=๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃ๎…ž๎…ž,๐œ“โ„Ž๎€ธ+๎€ท๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ=๎€ท๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ๎€ท๐‘ƒusing(5.28),โ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ=๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ=๎€ท๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธโˆ’๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎ฌโ„Ž+๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎ฌโ„Ž=๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ“โ„Ž๎€ธ+๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎ฌโ„Ž,||๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ||โ‰ค||๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ“โ„Ž๎€ธ||+||๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎ฌโ„Ž||โ‰ค๐‘‡7+๐‘‡8.(5.32) We shall compute the estimates for the terms ๐‘‡7 and ๐‘‡8๐‘‡7=||๐ธโ„Ž๎€ท๐‘’โ„Ž๎…ž๎…ž๐œ“โ„Ž๎€ธ||โ‰ค๐ถโ„Ž3โ€–๐‘ฃโ€–6,๐‘โ€–โ€–๐œ“โ„Žโ€–โ€–0,๐‘ž(5.33) by Lemma 5.1(b).
Following the steps of computation involved in the term ๐‘‡6, we obtain the estimate of ๐‘‡8 as ๐‘‡8=||๎ซ๐‘’โ„Ž๎…ž๎…ž,๐œ“โ„Ž๎ฌโ„Ž||๎€บโ„Žโ‰ค๐ถ2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–โ€–๐œ“โ„Žโ€–โ€–0,๐‘ž,(5.34) where we have used the inverse inequality โ€–๐œ“โ„Žโ€–1,๐‘ž,๐‘˜โ‰คโ„Ž๐‘˜โˆ’1โ€–๐œ“โ„Žโ€–0,๐‘ž,๐‘˜ locally. Using ๐‘‡7 and ๐‘‡8 in (5.32), we get ||๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ“โ„Ž๎€ธ||๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–โ€–๐œ“โ„Žโ€–โ€–0,๐‘ž.(5.35) We now show the above inequality for ๐œ‚โˆˆ๐ฟ๐‘ž to obtain โ€–๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…žโ€–0,๐‘.
Now let ๐œ‚ be an arbitrary element of ๐ฟ๐‘ž. Then since ๐‘ฃโ„Ž๎…ž๎…žโˆˆ๐‘†โ„Ž,1, it follows from the definition of ๐‘ƒโ„Ž๐œ‚, (5.35), and (5.29) with ๐‘ replaced by ๐‘ž, that ๎€ท๐‘ƒ0=โ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐œ‚โˆ’๐‘ƒโ„Ž๐œ‚๎€ธ,||๎€ท๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž๎€ธ||=||๎€ท๐‘ƒ,๐œ‚โ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…ž,๐‘ƒโ„Ž๐œ‚๎€ธ||๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–โ€–๐‘ƒโ„Ž๐œ‚โ€–โ€–0,๐‘ž๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–๐œ‚โ€–0,๐‘ž,โ€–โ€–๐‘ƒโ„Ž๐‘ฃ๎…ž๎…žโˆ’๐‘ฃโ„Ž๎…ž๎…žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป.(5.36) Now, from (5.30), (5.31), and (5.36), we conclude that โ€–โ€–๐‘’โ„Ž๎…ž๎…žโ€–โ€–0,๐‘โ‰ค๐ถโ„Ž2โ€–๐‘ฃโ€–4,๐‘๎€บโ„Ž+๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป.(5.37) Now, using the fact โ€–๐‘’โ„Žโ€–2,๐‘โ‰คโ€–๐‘’โ„Žโ€–1,๐‘+โ€–๐‘’โ„Ž๎…ž๎…žโ€–0,๐‘ and the above estimate, we have โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘โ‰คโ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€บโ„Ž+๐ถ2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป๎€บโ€–โ€–๐‘’โ‰ค๐ถโ„Žโ€–โ€–1,๐‘+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป๎€บโ€–โ€–๐‘’โ‰ค๐ถโ„Žโ€–โ€–1,๐‘+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–๐œ€โ„Žโ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป.(5.38) Now using (4.3) with ๐‘š=2 and ๐‘–=1, we have โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ทโ„Žโ‰ค๐ถโˆ’1โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–2,๐‘๎€ธ.(5.39) Substituting (5.39) in the above expression, we obtain โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘โ„Žโ‰ค๐ถ๎€บ๎€ทโˆ’1โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–2,๐‘๎€ธ+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป.(5.40) For sufficiently small โ„Ž, we have โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถโˆ’1โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป.(5.41) Using (5.41) in (5.27), โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ2๎€ทโ„Žโˆ’1โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ธ+โ„Ž4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป.(5.42) For sufficiently small โ„Ž, we get โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป.(5.43) Using (5.43) in (5.41), we have โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถโˆ’1๎€ทโ„Ž4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ธ+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป.(5.44) Using (5.43) and (5.44) in (5.39), we have โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถโˆ’1๎€ทโ„Ž4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ธ๎€ทโ„Ž+โ„Ž2โ€–๐‘ฃโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€บโ„Ž๎€ธ๎€ปโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘+โ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€ป.(5.45) Equations (5.43), (5.44), and (5.45) give the required result.

We now compute the error estimate of ๐œ€โ„Ž in ๐ฟ๐‘,๐‘Š1๐‘,and ๐‘Š2๐‘ norms as has been done in the previous case.

Lemma 5.4. Let ๐‘ข and ๐‘ฃ be the weak solutions of the coupled equations (1.4) and (1.5) defined through (2.7) and (2.8), respectively. Further, let ๐‘ขโ„Ž and ๐‘ฃโ„Ž be the corresponding discrete Petrov-Galerkin solutions defined through (2.10) and (2.11), respectively. Then the estimates of the errors ๐œ€โ„Ž=๐‘ขโˆ’๐‘ขโ„Ž in ๐ฟ๐‘,๐‘Š1๐‘and ๐‘Š2๐‘ norms are given as follows: โ€–โ€–๐œ€โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป,โ€–โ€–๐œ€โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ขโ€–6,๐‘+โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ป,โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ขโ€–6,๐‘+โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ป.(5.46)

Proof. Let ๐œŒ be an arbitrary element of ๐ฟ๐‘ž, and let ๐œ™โˆˆ๐‘Š2๐‘ž be the unique solution of the auxiliary problem ๐ฟโˆ—๐œ™=๐œŒ,๐œ™(0)=๐œ™(1)=0.(5.47) Then we have ๎€ท๐œ€โ„Ž๎€ธ=๎€ท๐œ€,๐œŒโ„Ž,๐ฟโˆ—๐œ™๎€ธ=๎€ท๐ฟ๐œ€โ„Ž๎€ธ=๎€ท๐œ€,๐œ™โ„Ž๎…ž๎…ž๎€ธ=๎€ท๐œ€,๐œ™โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ+๎€ท๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎€ธโˆ’๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž+๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž,(5.48) where ๐œ™โ„Žโˆˆ๐‘†โ„Ž,1 is a linear interpolant of ๐œ™, ||๎€ท๐œ€โ„Ž,๐œŒ๎€ธ||โ‰ค||๎€ท๐œ€โ„Ž๎…ž๎…ž,๐œ™โˆ’๐œ™โ„Ž๎€ธ||+||๐ธโ„Ž๎€ท๐œ€โ„Ž๎…ž๎…ž๐œ™โ„Ž๎€ธ||+||๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž||โ‰ค๐‘‡9+๐‘‡10+๐‘‡11.(5.49) Following the steps involved in the computation of ๐‘‡4 and ๐‘‡5, we obtain the estimates of ๐‘‡9 and ๐‘‡10 as follows: ๐‘‡9โ‰ค๐ถโ„Ž2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘โ€–๐œ™โ€–2,๐‘ž,๐‘‡10โ‰ค๐ถโ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–๐œ™โ€–2,๐‘ž,(5.50) by Lemma 5.1(c) and (5.22).
Using (5.5) and (2.3) first, then the Sobolev embedding theorem (4.7) locally on ๐ผ๐‘˜ for โ€–๐œ™โ„Žโ€–0,โˆž,๐‘˜ and โ€–๐‘’โ„Žโ€–0,โˆž,๐‘˜ to estimate ๐‘‡11, we have ๐‘‡11=||๎ซ๐œ€โ„Ž๎…ž๎…ž,๐œ™โ„Ž๎ฌโ„Ž||=||โŸจ๐›ผ๐‘’โ„Ž,๐œ™โ„ŽโŸฉโ„Ž||โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐‘’โ„Žโ€–โ€–0,โˆž,๐‘˜โ€–โ€–๐œ™โ„Žโ€–โ€–0,โˆž,๐‘˜โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐‘’โ„Žโ€–โ€–0,โˆž,๐‘˜โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘ž,๐‘˜โ‰ค๐ถ๐‘›๎“๐‘˜=1โ„Ž๐‘˜2โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘,๐‘˜โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘ž,๐‘˜.(5.51) Further, using Hรถlder's inequality for sums and (5.22), we obtain ๐‘‡11โ€–โ€–๐‘’โ‰ค๐ถโ„Žโ„Žโ€–โ€–1,๐‘โ€–โ€–๐œ™โ„Žโ€–โ€–1,๐‘žโ€–โ€–๐‘’โ‰ค๐ถโ„Žโ„Žโ€–โ€–1,๐‘โ€–๐œ™โ€–2,๐‘ž.(5.52) Substituting the estimates ๐‘‡9, ๐‘‡10, and ๐‘‡11 in (5.49), we obtain ||๎€ท๐œ€โ„Ž,๐œŒ๎€ธ||๎€บโ„Žโ‰ค๐ถ2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ปโ€–๐œ™โ€–2,๐‘ž.(5.53) Using (4.6) and regularity of the auxiliary problem, we have โ€–๐œ™โ€–2,๐‘žโ‰ค๐ถโ€–๐œŒโ€–๐‘œ,๐‘ž. Since ๐œŒโˆˆ๐ฟ๐‘ž is arbitrary, we have โ€–โ€–๐œ€โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป.(5.54) The estimate of โ€–๐œ€โ„Ž๎…ž๎…žโ€–0,๐‘ can be obtained through a projection argument as mentioned in Lemma 5.3 as โ€–โ€–๐œ€โ„Ž๎…ž๎…žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ขโ€–6,๐‘+โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ป,(5.55) where we have used Lemma 5.1(d). In a similar manner we can compute the estimates for โ€–๐œ€โ„Žโ€–0,๐‘, โ€–๐œ€โ„Žโ€–1,๐‘ and โ€–๐œ€โ„Žโ€–2,๐‘ as โ€–โ€–๐œ€โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ขโ€–6,๐‘โ€–โ€–๐‘’+โ„Žโ„Žโ€–โ€–1,๐‘๎€ป,โ€–โ€–๐œ€โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ขโ€–6,๐‘+โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ป,โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ขโ€–6,๐‘+โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ป.(5.56) Using all the estimates from Lemmas 5.3 and 5.4, we have the following main error estimates.

Theorem 5.5. Assume that ๐‘ข and ๐‘ฃ satisfy (1.4) and (1.5), respectively, with (4.1). Assume also that ๐‘ขโˆˆ๐‘Š6๐‘ and ๐‘ฃโˆˆ๐‘Š6๐‘, where ๐‘โˆˆ[1,โˆž]. Then (2.10) and (2.11) have unique solutions ๐‘ขโ„Žโˆˆ0๐‘†โ„Ž,3 and ๐‘ฃโ„Žโˆˆ0๐‘†โ„Ž,3, respectively, and for โ„Ž sufficiently small, one has โ€–โ€–๐‘ขโˆ’๐‘ขโ„Žโ€–โ€–๐‘–,๐‘โ‰ค๐ถโ„Ž4โˆ’๐‘–๎€บโ€–๐‘ขโ€–6,๐‘+โ€–๐‘ฃโ€–6,๐‘๎€ป,โ€–โ€–๐‘ฃโˆ’๐‘ฃโ„Žโ€–โ€–๐‘–,๐‘โ‰ค๐ถโ„Ž4โˆ’๐‘–๎€บโ€–๐‘ขโ€–6,๐‘+โ€–๐‘ฃโ€–6,๐‘๎€ป,๐‘–=0,1,2.(5.57)

Proof. Assume temporarily that solutions ๐‘ขโ„Ž and ๐‘ฃโ„Ž of (2.10) and (2.11), respectively, exist. Using (5.46) in (5.45), we obtain โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘+โ„Ž2๎€ทโ„Ž2โ€–๐‘ขโ€–6,๐‘+โ€–๐‘’โ„Žโ€–1,๐‘๎€ธ๎€ป.(5.58) For sufficiently small โ„Ž, we have โ€–โ€–๐‘’โ„Žโ€–โ€–1,๐‘๎€ทโ„Žโ‰ค๐ถ3โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ธ.(5.59) An application of the above in (5.46), we get โ€–โ€–๐œ€โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–๐‘ฃโ€–6,๐‘๎€ป.(5.60) Apply (5.59) in (5.56) to have โ€–โ€–๐œ€โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ขโ€–6,๐‘+โ„Ž4โ€–๐‘ฃโ€–6,๐‘๎€ป.(5.61) Use (5.60) in (5.43) to get โ€–โ€–๐‘’โ„Žโ€–โ€–0,๐‘๎€บโ„Žโ‰ค๐ถ4โ€–๐‘ฃโ€–6,๐‘+โ„Ž5โ€–๐‘ขโ€–6,๐‘๎€ป.(5.62) Using (5.60) in (5.44), we obtain โ€–โ€–๐‘’โ„Žโ€–โ€–2,๐‘๎€บโ„Žโ‰ค๐ถ2โ€–๐‘ฃโ€–6,๐‘+โ„Ž4โ€–๐‘ขโ€–6,๐‘๎€ป.(5.63) Using (5.61) and (5.60) in (5.39) with ๐‘’โ„Ž replaced by ๐œ€โ„Ž, we have โ€–โ€–๐œ€โ„Žโ€–โ€–1,๐‘๎€บโ„Žโ‰ค๐ถ3โ€–๐‘ขโ€–6,๐‘+โ„Ž3โ€–๐‘ฃโ€–6,๐‘๎€ป.(5.64) The required result can be obtained from estimates (5.59) to (5.64).

So far we have assumed temporarily that solutions ๐‘ขโ„Ž and ๐‘ฃโ„Ž exist. We now discuss the existence and uniqueness of discrete Petrov-Galerkin approximation. Since the matrix corresponding to (2.10) and (2.11) with zero boundary conditions for ๐‘ขโ„Ž and ๐‘ฃโ„Ž is square, existence of ๐‘ขโ„Žโˆˆ0๐‘†โ„Ž,3 and ๐‘ฃโ„Žโˆˆ0๐‘†โ„Ž,3 for any ๐‘“โˆˆ๐ถ0(๐ผ) will follow from uniqueness, that is, from the property that the corresponding homogeneous equations have only trivial solutions.

Suppose that ๐‘ขโ„Ž and ๐‘ฃโ„Ž corresponding to ๐‘ข and ๐‘ฃ satisfy ๎ซ๐‘ขโ„Ž๎…ž๎…žโˆ’๐›ผ๐‘ฃโ„Ž,๐œ’โ„Ž๎ฌ๎ซ๐‘ฃ=0,โ„Ž๎…ž๎…ž+๐‘๐‘ขโ„Ž,๐œ’โ„Ž๎ฌ=0,๐œ’โ„Žโˆˆ๐‘†โ„Ž,1.(5.65) It follows from (5.61) and (5.62) (with ๐‘ข replaced by 0 and eventually ๐‘ฃโ‰ก0) that, for sufficiently small โ„Ž, โ€–โ€–๐‘ขโ„Žโ€–โ€–0,๐‘โ€–โ€–๐‘ฃโ‰ค0,โ„Žโ€–โ€–0,๐‘โ‰ค0,(5.66) and hence ๐‘ขโ„Žโ‰ก0 and ๐‘ฃโ„Žโ‰ก0. Thus, uniqueness is proved, and hence existence follows from uniqueness.