Abstract

Let 𝐸 be a real reflexive and strictly convex Banach space with a uniformly GΓ’teaux differentiable norm. Let 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} be a family of uniformly asymptotically regular generalized asymptotically nonexpansive semigroup of 𝐸, with functions 𝑒,π‘£βˆΆ[0,∞)β†’[0,∞). Let 𝐹∢=𝐹(𝔍)=βˆ©π‘‘β‰₯0𝐹(𝑇(𝑑))β‰ βˆ… and π‘“βˆΆπΎβ†’πΎ be a weakly contractive map. For some positive real numbers πœ† and 𝛿 satisfying 𝛿+πœ†>1, let πΊβˆΆπΈβ†’πΈ be a 𝛿-strongly accretive and πœ†-strictly pseudocontractive map. Let {𝑑𝑛} be an increasing sequence in [0,∞) with limπ‘›β†’βˆžπ‘‘π‘›=∞, and let {𝛼𝑛} and {𝛽𝑛} be sequences in (0,1] satisfying some conditions. Strong convergence of a viscosity iterative sequence to common fixed points of the family 𝔍 of uniformly asymptotically regular asymptotically nonexpansive semigroup, which also solves the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)𝑝,𝑗(π‘βˆ’π‘₯)βŸ©β‰€0, for all π‘₯∈𝐹, is proved in a framework of a real Banach space.

1. Introduction

Let 𝐸 be a real Banach space. We denote by 𝐽 the normalized duality map from 𝐸 to 2πΈβˆ— (πΈβˆ— is the dual space of 𝐸), and it is defined by 𝐽(π‘₯)=π‘“βˆˆπΈβˆ—βˆΆβŸ¨π‘₯,π‘“βŸ©=β€–π‘₯β€–2=‖𝑓‖2ξ€Ύ.(1.1)

A mapping π‘‡βˆΆπΈβ†’πΈ is said to be contractive if ‖𝑇π‘₯βˆ’π‘‡π‘¦β€–β‰€π›Όβ€–π‘₯βˆ’π‘¦β€–, for π‘₯,π‘¦βˆˆπΈ, and some constant π›Όβˆˆ[0,1). It is said to be weakly contractive if there exists a nondecreasing function πœ“βˆΆ[0,∞)β†’[0,∞) satisfying πœ“(𝑑)=0 if and only if 𝑑=0 and ‖𝑇π‘₯βˆ’π‘‡π‘¦β€–β‰€β€–π‘₯βˆ’π‘¦β€–βˆ’πœ“(β€–π‘₯βˆ’π‘¦β€–), for all π‘₯,π‘¦βˆˆπΈ. It is known that the class of weakly contractive maps contain properly the class of contractive ones, see [1, 2]. A mapping π‘‡βˆΆπΈβ†’πΈ is said to be nonexpansive if ‖𝑇π‘₯βˆ’π‘‡π‘¦β€–β‰€β€–π‘₯βˆ’π‘¦β€–, for all π‘₯,π‘¦βˆˆπΈ and asymptotically nonexpansive if there exists a sequence {π‘˜π‘›}βŠ‚[1,∞) with π‘˜π‘›β†’1 as π‘›β†’βˆž and ‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–, for all π‘₯,π‘¦βˆˆπΈ. We denote by 𝐹(𝑇)={π‘₯βˆˆπΎβˆΆπ‘‡π‘₯=π‘₯} the set of fixed points of a map 𝑇.

A mapping π‘‡βˆΆπΈβ†’πΈ is said to be total asymptotically nonexpansive (see [3]) if there exist nonnegative real sequences {𝑒𝑛} and {𝑣𝑛}, with 𝑒𝑛→0 and 𝑣𝑛→0 as π‘›β†’βˆž and strictly increasing and continuous functions πœ“βˆΆβ„+→ℝ+ with πœ“(0)=0 such that ‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–β‰€β€–π‘₯βˆ’π‘¦β€–+π‘’π‘›πœ“(β€–π‘₯βˆ’π‘¦β€–)+𝑣𝑛,βˆ€π‘₯,π‘¦βˆˆπΎ.(1.2)

Remark 1.1. If πœ“(πœ†)=πœ†, the total asymptotically nonexpansive mapping coincides with generalized asymptotically nonexpansive mapping. In addition, for all π‘›βˆˆβ„•, if 𝑣𝑛=0, then generalized asymptotically nonexpansive mapping coincides with asymptotically nonexpansive mapping; if 𝑒𝑛=0,𝑣𝑛=max{0,𝑝𝑛} where π‘π‘›βˆΆ=supπ‘₯,π‘¦βˆˆπΎ(‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–βˆ’β€–π‘₯βˆ’π‘¦β€–), then generalized asymptotically nonexpansive mapping coincide with asymptotically nonexpansive mapping in the intermediate sense; if 𝑒𝑛=0, and 𝑣𝑛=0 then we obtain from (1.2) the class of nonexpansive mapping.
A one-parameter family of generalized asymptotically nonexpansive semigroup is a family 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} of self-mapping of 𝐸 such that (i)𝑇(0)π‘₯=π‘₯ for π‘₯∈𝐸,(ii)𝑇(𝑠+𝑑)π‘₯=𝑇(𝑠)𝑇(𝑑)π‘₯ for all 𝑑,𝑠β‰₯0 and π‘₯∈𝐸, (iii)lim𝑑→0𝑇(𝑑)π‘₯=π‘₯ for π‘₯∈𝐸, (iv)there exist functions 𝑒,π‘£βˆΆ[0,∞)β†’[0,∞) such that 𝑒(𝑑)β†’0,𝑣(𝑑)β†’0 as π‘‘β†’βˆž, and ‖𝑇(𝑑)π‘₯βˆ’π‘‡(𝑑)𝑦‖≀(1+𝑒(𝑑))β€–π‘₯βˆ’π‘¦β€–+𝑣(𝑑)βˆ€π‘₯,π‘¦βˆˆπΈ.(1.3)
We will denote by 𝐹 the common fixed-point set of 𝔍, that is, ξ™πΉβˆΆ=Fix(𝔍)={π‘₯βˆˆπΈβˆΆπ‘‡(𝑑)π‘₯=π‘₯,𝑑β‰₯0}=𝑑β‰₯0Fix(𝑇(𝑑)).(1.4)
The family 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} is said to be asymptotically regular if limπ‘ β†’βˆžβ€–π‘‡(𝑠+𝑑)π‘₯βˆ’π‘‡(𝑠)π‘₯β€–=0,(1.5) for all π‘‘βˆˆ[0,∞) and π‘₯∈𝐸. It is said to be uniformly asymptotically regular if, for any 𝑑β‰₯0 and for any bounded subset 𝐢 of 𝐸, limπ‘ β†’βˆžsupπ‘₯βˆˆπΆβ€–π‘‡(𝑠+𝑑)π‘₯βˆ’π‘‡(𝑠)π‘₯β€–=0.(1.6)
For some positive real numbers 𝛿 and πœ†, a mapping πΊβˆΆπΈβ†’πΈ is said to be 𝛿-strongly accretive if for any π‘₯,π‘¦βˆˆπΈ, there exists 𝑗(π‘₯βˆ’π‘¦)∈𝐽(π‘₯βˆ’π‘¦) such that ⟨𝐺π‘₯βˆ’πΊπ‘¦,𝑗(π‘₯βˆ’π‘¦)⟩β‰₯𝛿‖π‘₯βˆ’π‘¦β€–2,(1.7) and it is called πœ†-strictly pseudocontractive if ⟨𝐺π‘₯βˆ’πΊπ‘¦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€β€–π‘₯βˆ’π‘¦β€–2βˆ’πœ†β€–(πΌβˆ’πΊ)π‘₯βˆ’(πΌβˆ’πΊ)𝑦‖2.(1.8)
Let 𝐸 be a real Banach space, and let 𝛿,πœ†, and 𝜏 be positive real numbers satisfying 𝛿+πœ†>1 and 𝜏∈(0,1). Let πΊβˆΆπΈβ†’πΈ be a 𝛿-strongly accretive and πœ†-strictly pseudocontractive, then the following holds, see [4], for π‘₯,π‘¦βˆˆπΈβˆΆβ€–β€–β‰€ξƒ©ξ‚™(πΌβˆ’πΊ)π‘₯βˆ’(πΌβˆ’πΊ)𝑦1βˆ’π›Ώπœ†ξƒͺ‖‖π‘₯βˆ’π‘¦β€–,(πΌβˆ’πœπΊ)π‘₯βˆ’(πΌβˆ’πœπΊ)𝑦‖≀1βˆ’πœ1βˆ’1βˆ’π›Ώπœ†ξƒͺβ€–π‘₯βˆ’π‘¦β€–,(1.9) that is, (πΌβˆ’πΊ) and (πΌβˆ’πœπΊ) are contractive mappings.
Let 𝐢 be a nonempty closed-convex subset of 𝐸 and π‘‡βˆΆπΈβ†’πΈ a map. Then, a variational inequality problem with respect to 𝐢 and 𝑇 is found to be π‘₯βˆ—βˆˆπΆ such that 𝑇π‘₯βˆ—ξ€·,π‘—π‘¦βˆ’π‘₯βˆ—ξ€·ξ€Έξ¬β‰₯0,βˆ€π‘¦βˆˆπΆ,π‘—π‘¦βˆ’π‘₯βˆ—ξ€Έξ€·βˆˆπ½π‘¦βˆ’π‘₯βˆ—ξ€Έ.(1.10)
Recently, convergence theorems for fixed points of nonexpansive mappings, common fixed points of family of nonexpansive mappings, nonexpansive semigroup, and their generalisation have been studied by numerous authors (see, e.g., [5–21]).
Acedo and Suzuki [22], recently, proved the strong convergence of the Browder's implicit scheme, π‘₯0,π‘’βˆˆπΆ, π‘₯𝑛=𝛼𝑛𝑒+1βˆ’π›Όπ‘›ξ€Έπ‘‡ξ€·π‘‘π‘›ξ€Έπ‘₯𝑛,𝑛β‰₯0,(1.11) to a common fixed point of a uniformly asymptotically regular family {𝑇(𝑑)βˆΆπ‘‘β‰₯0} of nonexpansive semigroup in the framework of a real Hilbert space.
Li et al. [23] proved strong convergence theorems for implicit viscosity schemes for common fixed points of family of generalized asymptotically nonexpansive semigroups in Banach spaces.
Let 𝑆 be a semigroup and 𝐡(𝑆) the subspace of all bounded real-valued functions defined on 𝑆 with supremum norm. For each π‘ βˆˆπ‘†, the left translator operator 𝑙(𝑠) on 𝐡(𝑆) is defined by (𝑙(𝑠)𝑓)(𝑑)=𝑓(𝑠𝑑) for each π‘‘βˆˆπ‘† and π‘“βˆˆπ΅(𝑆). Let 𝑋 be a subspace of 𝐡(𝑆) containing 1, and let π‘‹βˆ— be its topological dual. An element πœ‡ of π‘‹βˆ— is said to be a mean on 𝑋 if β€–πœ‡β€–=πœ‡(1)=1. Let 𝑋 be 𝑙𝑠 invariant, that is, 𝑙𝑠(𝑋)βŠ‚π‘‹ for each π‘ βˆˆπ‘†. A mean πœ‡ on 𝑋 is said to be left invariant if πœ‡(𝑙𝑠𝑓)=πœ‡(𝑓) for each π‘ βˆˆπ‘† and π‘“βˆˆπ‘‹.
Recently, Saeidi and Naseri [24] studied the problem of approximating common fixed point of a family of nonexpansive semigroup and solution of some variational inequality problem in a real Hilbert space. They proved the following theorem.

Theorem 1.2 (Saeidi and Naseri [24]). Let 𝔍={𝑇(𝑑)βˆΆπ‘‘βˆˆπ‘†} be a nonexpansive semigroup in a real Hilbert space 𝐻 such that 𝐹(𝔍)β‰ βˆ…. Let 𝑋 be a left invariant subspace of 𝐡(𝑆) such that 1βˆˆπ‘‹, and the function π‘‘β†’βŸ¨π‘‡(𝑑)π‘₯,π‘¦βŸ© is an element of 𝑋 for each π‘₯,π‘¦βˆˆπ». Let π‘“βˆΆπΈβ†’πΈ be a contraction with constant 𝛼, and let πΊβˆΆπ»β†’π» be strongly positive map with constant 𝛾>0. Let {πœ‡π‘›} be a left regular sequence of means on 𝑋, and let {𝛼𝑛} be a sequence in (0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0 and βˆ‘βˆžπ‘›=1𝛼𝑛=∞. Let π›Ύβˆˆ(0,𝛾/𝛼), and let {π‘₯𝑛} be a sequence generated by π‘₯0∈𝐻, π‘₯𝑛+1=ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·πœ‡π‘›ξ€Έπ‘₯𝑛+𝛼𝑛π‘₯𝛾𝑓𝑛,𝑛β‰₯0.(1.12)
Then, {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which is the unique solution of the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)π‘₯βˆ—,𝑗(π‘₯βˆ’π‘₯βˆ—)⟩β‰₯0 for all π‘₯∈𝐹(𝔍). Equivalently one has 𝑃𝐹(𝔍)(πΌβˆ’πΊ+𝛾𝑓)π‘₯βˆ—=π‘₯βˆ—.

More recently, as commented by Golkarmanesh and Naseri [25], Piri and Vaezi [4] gave a minor variation of Theorem 1.2 as follows.

Theorem 1.3 (Piri and Vaezi [4]). Let 𝔍={𝑇(𝑑)βˆΆπ‘‘βˆˆπ‘†} be a nonexpansive semigroup on a real Hilbert space 𝐻 such that 𝐹(𝔍)β‰ βˆ…. Let 𝑋 be a left invariant subspace of 𝐡(𝑆) such that 1βˆˆπ‘‹, and the function π‘‘β†’βŸ¨π‘‡(𝑑)π‘₯,π‘¦βŸ© is an element of 𝑋 for each π‘₯,π‘¦βˆˆπ». Let π‘“βˆΆπΈβ†’πΈ be a contraction with constant 𝛼, and let πΊβˆΆπ»β†’π» be 𝛿-strongly accretive and πœ†-strictly pseudocontractive with 𝛿+πœ†>1. Let {πœ‡π‘›} be a left regular sequence of means on 𝑋, and let {𝛼𝑛} be a sequence in (0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0 and βˆ‘βˆžπ‘›=1𝛼𝑛=∞. Let {π‘₯𝑛} be a sequence generated by π‘₯0∈𝐻, π‘₯𝑛+1=ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·πœ‡π‘›ξ€Έπ‘₯𝑛+𝛼𝑛π‘₯𝛾𝑓𝑛,𝑛β‰₯0,(1.13) where √0<𝛾<(1βˆ’(1βˆ’π›Ώ/πœ†))/𝛼, then, {π‘₯𝑛} converges strongly to a common fixed point of the family 𝐹(𝔍) which is the unique solution of the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)π‘₯βˆ—,𝑗(π‘₯βˆ’π‘₯βˆ—)⟩β‰₯0 for all π‘₯∈𝐹(𝔍). Equivalently one has 𝑃𝐹(𝔍)(πΌβˆ’πΊ+𝛾𝑓)π‘₯βˆ—=π‘₯βˆ—.

Very recently, Ali [26] continued the study of the problem in [4, 24] and proved a strong convergence theorem in a Banach space setting much more general than Hilbert space. He actually proved the following theorem.

Theorem 1.4 (Ali [26]). Let 𝐸 be a real Banach space with local uniform Opial's property whose duality mapping is sequentially continuous. Let 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} be a uniformly asymptotically regular family of asymptotically nonexpansive semigroup of 𝐸 with function π‘˜βˆΆ[0,∞)β†’[0,∞) and 𝐹∢=𝐹(𝔍)=βˆ©π‘‘β‰₯0𝐹(𝑇(𝑑))β‰ βˆ…. Let π‘“βˆΆπΈβ†’πΈ be weakly contractive, and let πΊβˆΆπΈβ†’πΈ be 𝛿-strongly accretive and πœ†-strictly pseudocontractive with 𝛿+πœ†>1. Let βˆšπœ‚βˆΆ=(1βˆ’(1βˆ’π›Ώ)/πœ†) and π›Ύβˆˆ(0,min{πœ‚,𝛿/2}). Let {𝛽𝑛} and {𝛼𝑛} be sequences in (0,1], and let {𝑑𝑛} be an increasing sequence in [0,∞) satisfying the following conditions: limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆžπ‘˜π‘›π›Όπ‘›=0,βˆžξ“π‘›=1𝛼𝑛=∞,0<liminfπ‘›β†’βˆžπ›½π‘›β‰€limsupπ‘›β†’βˆžπ›½π‘›<1.(1.14)
Define a sequence {π‘₯𝑛} by π‘₯0∈𝐸, π‘₯𝑛+1=𝛽𝑛π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ‘¦π‘›,𝑦𝑛=ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·π‘‘π‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝛾𝑛𝑓π‘₯𝑛,𝑛β‰₯0.(1.15)
Then, the sequence {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which solves the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)π‘ž,𝑗(π‘₯βˆ’π‘ž)⟩β‰₯0,βˆ€π‘₯∈𝐹.(1.16)

Remark 1.5. It is well known that all 𝑙𝑝(1<𝑝<∞) spaces satisfy Opial's condition and possess a weakly sequentially continuous duality mapping. However, 𝐿𝑝  (1<𝑝<∞) spaces and consequently all Sobolev spaces do not satisfy either of the properties.
It is our purpose in this paper to prove a strong convergence theorem for approximating common fixed points of family of uniformly asymptotically regular generalized asymptotically nonexpansive semigroup in a real reflexive and strictly convex Banach space 𝐸 with a uniformly GΓ’teaux differentiable norm. Our theorem is applicable in 𝐿𝑝(ℓ𝑝) spaces, 1<𝑝<∞ (and consequently in sobolev spaces). Our theorem extends and improves some recent important results. For instance, our theorem presents a convergence of an explicit scheme that extends Theorem 1.4 to a more general setting of Banach spaces that includes 𝐿𝑝(1<𝑝<∞) spaces on one hand and for more general class of maps on the other hand.

2. Preliminaries

Let π‘†βˆΆ={π‘₯∈𝐸∢||π‘₯||=1} denote the unit sphere of a real Banach space 𝐸. 𝐸 is said to have a GΓ’teaux differentiable norm if the limit lim𝑑→0β€–π‘₯+π‘‘π‘¦β€–βˆ’β€–π‘₯‖𝑑(2.1) exists for each π‘₯,π‘¦βˆˆπ‘†; 𝐸 is said to have a uniformly GΓ’teaux differentiable norm if for each π‘¦βˆˆπ‘†, the limit is attained uniformly for π‘₯βˆˆπ‘†. A Banach space 𝐸 is said to be strictly convex if β€–π‘₯+𝑦‖/2<1 for π‘₯≠𝑦 and β€–π‘₯β€–=‖𝑦‖=1.

Let 𝐾 be a nonempty, closed, convex, and bounded subset of a real Banach space 𝐸, and let the diameter of 𝐾 be defined by 𝑑(𝐾)∢=sup{β€–π‘₯βˆ’π‘¦β€–βˆΆπ‘₯,π‘¦βˆˆπΎ}. For each π‘₯∈𝐾, let π‘Ÿ(π‘₯,𝐾)∢=sup{β€–π‘₯βˆ’π‘¦β€–βˆΆπ‘¦βˆˆπΎ} and π‘Ÿ(𝐾)∢=inf{π‘Ÿ(π‘₯,𝐾)∢π‘₯∈𝐾} denote the Chebyshev radius of 𝐾 relative to itself. The normal structure coefficient 𝑁(𝐸) of 𝐸 (introduced in 1980 by Bynum [27], see also Lim [28] and the references contained therein) is defined by 𝑁(𝐸)∢=inf{(𝑑(𝐾)/π‘Ÿ(𝐾)): 𝐾 is a closed convex and bounded subset of 𝐸 with 𝑑(𝐾)>0}. A space 𝐸 such that 𝑁(𝐸)>1 is said to have uniform normal structures . It is known that every space with a uniform normal structure is reflexive, and that all uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see, e.g., [29]).

Let 𝐸 be a real Banach space with uniformly GΓ’teaux differentiable norm, then the normalized duality mapping π½βˆΆπΈβ†’2πΈβˆ—, defined by (1.1), is singled valued and uniformly continuous from the norm topology of 𝐸 to the weakβˆ— topology of πΈβˆ— on each bounded subset of 𝐸, see, for example [30].

Definition 2.1. Let πœ‡ be a continuous linear functional on π‘™βˆž, and let (π‘Ž0,π‘Ž1,…)βˆˆπ‘™βˆž. We write πœ‡π‘›(π‘Žπ‘›) instead of πœ‡(π‘Ž0,π‘Ž1,…). The function πœ‡ is called a Banach limit when πœ‡ satisfies ||πœ‡||=πœ‡π‘›(1)=1 and πœ‡π‘›(π‘Žπ‘›+1)=πœ‡π‘›(π‘Žπ‘›) for each (π‘Ž0,π‘Ž1,…)βˆˆπ‘™βˆž.
For a Banach limit πœ‡, it is known that liminfπ‘›β†’βˆžπ‘Žπ‘›β‰€πœ‡π‘›(π‘Žπ‘›)≀limsupπ‘›β†’βˆžπ‘Žπ‘› for every π‘Ž=(π‘Ž0,π‘Ž1,…)βˆˆπ‘™βˆž. So if π‘Ž=(π‘Ž0,π‘Ž1,…)βˆˆπ‘™βˆž and π‘Žπ‘›βˆ’π‘π‘›β†’0 as π‘›β†’βˆž, we have πœ‡π‘›(π‘Žπ‘›)=πœ‡π‘›(𝑏𝑛).
We will make use of the following well-known result.

Lemma 2.2. Let 𝐸 be a real-normed linear space. Then, the following inequality holds: β€–π‘₯+𝑦‖2≀‖π‘₯β€–2+2βŸ¨π‘¦,𝑗(π‘₯+𝑦)βŸ©βˆ€π‘₯,π‘¦βˆˆπΈ,𝑗(π‘₯+𝑦)∈𝐽(π‘₯+𝑦).(2.2)

In the sequel, we shall also make use of the following lemmas.

Lemma 2.3 (Suzuki [31]). Let {π‘₯𝑛} and {𝑦𝑛} be bounded sequences in a real Banach space 𝐸, and let {𝛽𝑛} be a sequence in [0,1] with 0<liminf𝛽𝑛≀limsup𝛽𝑛<1. Suppose that π‘₯𝑛+1=𝛽𝑛𝑦𝑛+(1βˆ’π›½π‘›)π‘₯𝑛 for all integer 𝑛β‰₯1 and limsupπ‘›β†’βˆž(||𝑦𝑛+1βˆ’π‘¦π‘›||βˆ’||π‘₯𝑛+1βˆ’π‘₯𝑛||)≀0. Then, limπ‘›β†’βˆž||π‘¦π‘›βˆ’π‘₯𝑛||=0.

Lemma 2.4 (Shioji and Takahashi [32]). Let (π‘Ž0,π‘Ž1,π‘Ž2,…)βˆˆπ‘™βˆž be such that πœ‡π‘›π‘Žπ‘›β‰€0 for all Banach limits πœ‡. If limsupπ‘›β†’βˆž(π‘Žπ‘›+1βˆ’π‘Žπ‘›)≀0, then limsupπ‘›β†’βˆžπ‘Žπ‘›β‰€0.

Lemma 2.5 (Xu [33]). Let {π‘Žπ‘›} be a sequence of nonnegative real numbers satisfying the following relation: π‘Žπ‘›+1≀1βˆ’π›Όπ‘›ξ€Έπ‘Žπ‘›+π›Όπ‘›πœŽπ‘›+𝛾𝑛,𝑛β‰₯0,(2.3) where (i){π›Όπ‘›βˆ‘}βŠ‚[0,1],βˆžπ‘›=0𝛼𝑛=βˆžβ€‰β€‰(ii)limsupπ‘›β†’βˆžπœŽπ‘›β‰€0   (iii)𝛾𝑛β‰₯0 and βˆ‘(𝑛β‰₯0),βˆžπ‘›=0𝛾𝑛<∞. Then, π‘Žπ‘›β†’0 as π‘›β†’βˆž.

3. Main Results

Theorem 3.1. Let 𝐸 be a real reflexive and strictly convex Banach space with a uniformly GΓ’teaux differentiable norm, and let 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} be uniformly asymptotically regular family of generalized asymptotically nonexpansive semigroup of 𝐸, with functions 𝑒,π‘£βˆΆ[0,∞)β†’[0,∞) and 𝐹∢=𝐹(𝔍)=βˆ©π‘‘β‰₯0𝐹(𝑇(𝑑))β‰ βˆ…. Let π‘“βˆΆπΈβ†’πΈ be weakly contractive, and let πΊβˆΆπΈβ†’πΈ be 𝛿-strongly accretive and πœ†-strictly pseudocontractive with 𝛿+πœ†>1. Let βˆšπœ‚βˆΆ=(1βˆ’(1βˆ’π›Ώ)/πœ†) and π›Ύβˆˆ(0,min{𝛿,πœ‚/2}). Let {𝛽𝑛} and {𝛼𝑛} be sequences in (0,1] and {𝑑𝑛} an increasing sequence in [0,∞) satisfying the following conditions: limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆžπ‘’ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›=0,limπ‘›β†’βˆžπ‘£ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›=0,βˆžξ“π‘›=1𝛼𝑛=∞,0<liminfπ‘›β†’βˆžπ›½π‘›β‰€limsupπ‘›β†’βˆžπ›½π‘›<1,limπ‘›β†’βˆžπ‘‘π‘›=∞.(3.1)
Define a sequence {π‘₯𝑛} by π‘₯0∈𝐸, π‘₯𝑛+1=𝛽𝑛π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ‘¦π‘›,𝑦𝑛=ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·π‘‘π‘›ξ€Έπ‘₯𝑛+𝛼𝑛π‘₯𝛾𝑓𝑛,𝑛β‰₯0.(3.2)
Then, the sequence {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which solves the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)π‘ž,𝑗(π‘₯βˆ’π‘ž)⟩β‰₯0,βˆ€π‘₯∈𝐹.(3.3)

Proof. We start by showing that solution of the variational inequality (3.3) in 𝐹 is at most one. Assume that π‘ž,π‘βˆˆπΉ are solutions of the variational inequality (3.3), then ⟨(πΊβˆ’π›Ύπ‘“)𝑝,𝑗(π‘žβˆ’π‘)⟩β‰₯0,⟨(πΊβˆ’π›Ύπ‘“)π‘ž,𝑗(π‘βˆ’π‘ž)⟩β‰₯0.(3.4)
Adding these two inequalities, we get ⟨(πΊβˆ’π›Ύπ‘“)π‘βˆ’(πΊβˆ’π›Ύπ‘“)π‘ž,𝑗(π‘βˆ’π‘ž)βŸ©β‰€0.(3.5)
Therefore, 0β‰₯⟨(πΊβˆ’π›Ύπ‘“)π‘βˆ’(πΊβˆ’π›Ύπ‘“)π‘ž,𝑗(π‘βˆ’π‘ž)⟩=⟨𝐺(𝑝)βˆ’πΊ(π‘ž),𝑗(π‘βˆ’π‘ž)βŸ©βˆ’π›ΎβŸ¨π‘“(𝑝)βˆ’π‘“(π‘ž),𝑗(π‘βˆ’π‘ž)⟩β‰₯π›Ώβ€–π‘βˆ’π‘žβ€–2βˆ’π›Ύβ€–π‘“(𝑝)βˆ’π‘“(π‘ž)β€–β€–π‘βˆ’π‘žβ€–β‰₯π›Ώβ€–π‘βˆ’π‘žβ€–2+π›Ύπœ“(β€–π‘βˆ’π‘žβ€–)β€–π‘βˆ’π‘žβ€–βˆ’π›Ύβ€–π‘βˆ’π‘žβ€–2=(π›Ώβˆ’π›Ύ)β€–π‘βˆ’π‘žβ€–2)+π›Ύπœ“(β€–π‘βˆ’π‘žβ€–β€–π‘βˆ’π‘žβ€–.(3.6) Since 𝛿>𝛾, we obtain that 𝑝=π‘ž, and so the solution is unique in 𝐹.
Now, let π‘βˆˆπΉ, since (1βˆ’π›Όπ‘›πœ‚)(𝑒(𝑑𝑛)/𝛼𝑛)β†’0 and (1βˆ’π›Όπ‘›πœ‚)(𝑣(𝑑𝑛)/𝛼𝑛)β†’0 as π‘›β†’βˆž, then there exists 𝑛0βˆˆβ„• such that (1βˆ’π›Όπ‘›πœ‚)(𝑒(𝑑𝑛)/𝛼𝑛)<(πœ‚βˆ’π›Ύ)/2 and (1βˆ’π›Όπ‘›πœ‚)(𝑣(𝑑𝑛)/𝛼𝑛)<(πœ‚βˆ’π›Ύ)/2 for all 𝑛β‰₯𝑛0. Hence, for 𝑛β‰₯𝑛0, we have the following: β€–β€–π‘¦π‘›β€–β€–β‰€β€–β€–ξ€·βˆ’π‘πΌβˆ’π›Όπ‘›πΊπ‘‡ξ€·π‘‘ξ€Έξ€·π‘›ξ€Έπ‘₯π‘›ξ€Έβ€–β€–βˆ’π‘+𝛼𝑛‖‖π‘₯π›Ύπ‘“π‘›ξ€Έβ€–β€–β‰€ξ€·βˆ’πΊ(𝑝)1βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€Ίξ€·1+𝑒𝑛‖‖π‘₯ξ€Έξ€Έπ‘›β€–β€–ξ€·π‘‘βˆ’π‘+𝑣𝑛+𝛼𝑛𝛾‖‖𝑓π‘₯π‘›ξ€Έβ€–β€–βˆ’π‘“(𝑝)+𝛼𝑛(≀‖𝛾𝑓𝑝)βˆ’πΊ(𝑝)β€–1βˆ’π›Όπ‘›ξ€·(πœ‚βˆ’π›Ύ)+1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘’ξ€·π‘‘π‘›β€–β€–π‘₯𝑛‖‖+ξ€·βˆ’π‘1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ+𝛼𝑛‖𝛾𝑓(𝑝)βˆ’πΊ(𝑝)β€–,(3.7)
so that β€–β€–π‘₯𝑛+1β€–β€–βˆ’π‘β‰€π›½π‘›β€–β€–π‘₯𝑛‖‖+ξ€·βˆ’π‘1βˆ’π›½π‘›ξ€Έβ€–β€–π‘¦π‘›β€–β€–β‰€ξ€Ίπ›½βˆ’π‘π‘›+ξ€·1βˆ’π›½π‘›ξ€Έξ€Ί1βˆ’π›Όπ‘›(ξ€·πœ‚βˆ’π›Ύ)+1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘’ξ€·π‘‘π‘›β€–β€–π‘₯𝑛‖‖+ξ€·βˆ’π‘1βˆ’π›Όπ‘›πœ‚ξ€Έξ€·1βˆ’π›½π‘›ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ+𝛼𝑛1βˆ’π›½π‘›ξ€Έβ€–β‰€ξƒ¬β€–π›Ύπ‘“(𝑝)βˆ’πΊ(𝑝)1βˆ’π›Όπ‘›ξ€·1βˆ’π›½π‘›ξ€Έξƒ©ξ€·(πœ‚βˆ’π›Ύ)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘’ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›β€–β€–π‘₯ξƒͺξƒ­π‘›β€–β€–βˆ’π‘+𝛼𝑛1βˆ’π›½π‘›ξ€Έξƒ¬ξ€·β€–π›Ύπ‘“(𝑝)βˆ’πΊ(𝑝)β€–+1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›ξƒ­β‰€ξƒ¬1βˆ’π›Όπ‘›ξ€·1βˆ’π›½π‘›ξ€Έξƒ©ξ€·(πœ‚βˆ’π›Ύ)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘’ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›β€–β€–π‘₯ξƒͺξƒ­π‘›β€–β€–βˆ’π‘+𝛼𝑛1βˆ’π›½π‘›ξ€Έξƒ©ξ€·(πœ‚βˆ’π›Ύ)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘’ξ€·π‘‘π‘›ξ€Έπ›Όπ‘›ξƒͺΓ—2‖𝛾𝑓(𝑝)βˆ’πΊ(𝑝)β€–+1βˆ’π›Όπ‘›πœ‚π‘£ξ€·π‘‘ξ€Έξ€·π‘›ξ€Έ/𝛼𝑛‖‖π‘₯πœ‚βˆ’π›Ύβ‰€max𝑛‖‖,βˆ’π‘2‖𝛾𝑓(𝑝)βˆ’πΊ(𝑝)β€–ξ‚Ό.πœ‚βˆ’π›Ύ+1(3.8)
By induction, we have β€–β€–π‘₯𝑛‖‖‖‖π‘₯βˆ’π‘β‰€max𝑛0β€–β€–,βˆ’π‘2‖𝛾𝑓(𝑝)βˆ’πΊ(𝑝)β€–ξ‚Όπœ‚βˆ’π›Ύ+1,βˆ€π‘›β‰₯0.(3.9)
Thus, {π‘₯𝑛} is bounded and so are {𝑇(𝑑𝑛)π‘₯𝑛},{𝐺𝑇(𝑑𝑛)π‘₯𝑛},{𝑦𝑛}, and {𝑓(π‘₯𝑛)}.
Observe that 𝑦𝑛+1βˆ’π‘¦π‘›=ξ€·ξ€·πΌβˆ’π›Όπ‘›+1𝐺𝑇𝑑𝑛+1ξ€Έπ‘₯𝑛+1βˆ’ξ€·πΌβˆ’π›Όπ‘›+1𝐺𝑇𝑑𝑛+1ξ€Έπ‘₯𝑛+ξ€·ξ€·πΌβˆ’π›Όπ‘›+1𝐺𝑇𝑑𝑛+1ξ€Έπ‘₯π‘›βˆ’ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·π‘‘π‘›+1ξ€Έπ‘₯𝑛+ξ€·ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·π‘‘π‘›+1ξ€Έπ‘₯π‘›βˆ’ξ€·πΌβˆ’π›Όπ‘›πΊξ€Έπ‘‡ξ€·π‘‘π‘›ξ€Έπ‘₯𝑛+𝛼𝑛+1ξ€·π‘₯𝛾𝑓𝑛+1ξ€Έβˆ’π›Όπ‘›+1ξ€·π‘₯𝛾𝑓𝑛+𝛼𝑛+1ξ€·π‘₯π›Ύπ‘“π‘›ξ€Έβˆ’π›Όπ‘›ξ€·π‘₯𝛾𝑓𝑛,ξ€Έξ€Έ(3.10) so that ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–β‰€ξ€·1βˆ’π›Όπ‘›+1πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛+1β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›+1πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›+1ξ€Έ+||π›Όπ‘›βˆ’π›Όπ‘›+1||‖‖𝑑𝐺𝑇𝑛+1ξ€Έπ‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έβ€–β€–π‘‡π‘‘ξ€·ξ€·π‘›+1βˆ’π‘‘π‘›ξ€Έ+𝑑𝑛π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖+𝛼𝑛+1𝛾‖‖𝑓π‘₯𝑛+1ξ€Έξ€·π‘₯βˆ’π‘“π‘›ξ€Έβ€–β€–+||𝛼𝑛+1βˆ’π›Όπ‘›||𝛾‖‖𝑓π‘₯𝑛‖‖≀1βˆ’π›Όπ‘›+1πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛+1β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›+1πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›+1ξ€Έ+||π›Όπ‘›βˆ’π›Όπ‘›+1||‖‖𝑑𝐺𝑇𝑛+1ξ€Έπ‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έsupπ‘§βˆˆ{π‘₯𝑛},π‘ βˆˆβ„+‖‖𝑇𝑠+π‘‘π‘›ξ€Έξ€·π‘‘π‘§βˆ’π‘‡π‘›ξ€Έπ‘§β€–β€–+𝛼𝑛+1𝛾‖‖𝑓π‘₯𝑛+1ξ€Έξ€·π‘₯βˆ’π‘“π‘›ξ€Έβ€–β€–+||𝛼𝑛+1βˆ’π›Όπ‘›||𝛾‖‖𝑓π‘₯𝑛‖‖.(3.11)
From this, we obtain that ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–βˆ’β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖≀1βˆ’π›Όπ‘›+1πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛+1ξ€»β€–β€–π‘₯ξ€Έξ€Έβˆ’1𝑛+1βˆ’π‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›+1πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›+1ξ€Έ+||π›Όπ‘›βˆ’π›Όπ‘›+1||‖‖𝑑𝐺𝑇𝑛+1ξ€Έπ‘₯𝑛‖‖+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έsupπ‘§βˆˆ{π‘₯𝑛},π‘ βˆˆβ„+‖‖𝑇𝑠+π‘‘π‘›ξ€Έξ€·π‘‘π‘§βˆ’π‘‡π‘›ξ€Έπ‘§β€–β€–+𝛼𝑛+1𝛾‖‖𝑓π‘₯𝑛+1ξ€Έξ€·π‘₯βˆ’π‘“π‘›ξ€Έβ€–β€–+||𝛼𝑛+1βˆ’π›Όπ‘›||𝛾‖‖𝑓π‘₯𝑛‖‖,(3.12) which implies that limsupπ‘›β†’βˆžξ€·β€–β€–π‘¦π‘›+1βˆ’π‘¦π‘›β€–β€–βˆ’β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖≀0,(3.13) and by Lemma 2.3, limπ‘›β†’βˆžβ€–β€–π‘¦π‘›βˆ’π‘₯𝑛‖‖=0.(3.14)
Thus, β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖=ξ€·1βˆ’π›½π‘›ξ€Έβ€–β€–π‘¦π‘›βˆ’π‘₯π‘›β€–β€–βŸΆ0asπ‘›βŸΆβˆž.(3.15)
Next, we show that limπ‘›β†’βˆžβ€–π‘¦π‘›βˆ’π‘‡(𝑑)𝑦𝑛‖=0, for all 𝑑β‰₯0.
Since β€–β€–π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖≀‖‖π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯𝑛+1ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖≀‖‖π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–+𝛽𝑛‖‖π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖+ξ€·1βˆ’π›½π‘›ξ€Έβ€–β€–π‘¦π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖,(3.16) we have ξ€·1βˆ’π›½π‘›ξ€Έβ€–β€–π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖≀‖‖π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–+ξ€·1βˆ’π›½π‘›ξ€Έβ€–β€–π‘¦π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖=β€–β€–π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–+𝛼𝑛1βˆ’π›½π‘›ξ€Έβ€–β€–ξ€·π‘₯π›Ύπ‘“π‘›ξ€Έξ€·π‘‘βˆ’πΊπ‘‡π‘›ξ€Έπ‘₯𝑛‖‖.(3.17)
From 𝛼𝑛→0 as π‘›β†’βˆž and (3.15), we obtain limπ‘›β†’βˆžβ€–β€–π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖=0.(3.18)
Also, β€–β€–π‘¦π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘¦π‘›β€–β€–β‰€β€–β€–π‘¦π‘›βˆ’π‘₯𝑛‖‖+β€–β€–π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖+‖‖𝑇𝑑𝑛π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘¦π‘›β€–β€–β‰€ξ€·ξ€·π‘‘2+π‘’π‘›β€–β€–π‘¦ξ€Έξ€Έπ‘›βˆ’π‘₯𝑛‖‖𝑑+𝑣𝑛+β€–β€–π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯π‘›β€–β€–βŸΆ0asπ‘›βŸΆβˆž.(3.19)
Since limπ‘›β†’βˆžπ‘‘π‘›=∞ and {𝑇(𝑑)βˆΆπ‘‘β‰₯0} is uniformly asymptotically regular, limπ‘›β†’βˆžβ€–β€–π‘‡ξ€·π‘‘(𝑑)𝑇𝑛π‘₯π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘₯𝑛‖‖≀limπ‘›β†’βˆžsupπ‘₯βˆˆπΆβ€–β€–π‘‡ξ€·π‘‘(𝑑)𝑇𝑛𝑑π‘₯βˆ’π‘‡π‘›ξ€Έπ‘₯β€–β€–=0,limπ‘›β†’βˆžβ€–β€–ξ€·π‘‘π‘‡(𝑑)π‘‡π‘›ξ€Έπ‘¦π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘¦π‘›β€–β€–β‰€limπ‘›β†’βˆžsupπ‘¦βˆˆπΆβ€–β€–ξ€·π‘‘π‘‡(𝑑)π‘‡π‘›ξ€Έξ€·π‘‘π‘¦βˆ’π‘‡π‘›ξ€Έπ‘¦β€–β€–=0,(3.20) where 𝐢 is any bounded subset of 𝐸 containing {π‘₯𝑛}. Since {𝑇(𝑑)} is continuous, we get that β€–β€–π‘¦π‘›βˆ’π‘‡(𝑑)π‘¦π‘›β€–β€–β‰€β€–β€–π‘¦π‘›ξ€·π‘‘βˆ’π‘‡π‘›ξ€Έπ‘¦π‘›β€–β€–+β€–β€–π‘‡ξ€·π‘‘π‘›ξ€Έπ‘¦π‘›ξ€·π‘‡ξ€·π‘‘βˆ’π‘‡(𝑑)𝑛𝑦𝑛‖‖+‖‖𝑇𝑑𝑇(𝑑)π‘›ξ€Έπ‘¦π‘›ξ€Έβˆ’π‘‡(𝑑)𝑦𝑛‖‖.(3.21)
This implies that limπ‘›β†’βˆžβ€–β€–π‘¦π‘›βˆ’π‘‡(𝑑)𝑦𝑛‖‖=0,βˆ€π‘‘β‰₯0.(3.22)
Next, we show that limsupπ‘›β†’βˆžξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘ξ€Έξ¬β‰€0.(3.23)
Define a map πœ™βˆΆπΈβ†’β„ by πœ™(𝑦)∢=πœ‡π‘›β€–β€–π‘¦π‘›β€–β€–βˆ’π‘¦2,βˆ€π‘¦βˆˆπΈ.(3.24)
Then, πœ™(𝑦)β†’βˆž as β€–π‘¦β€–β†’βˆž, πœ™ is continuous and convex, so as 𝐸 is reflexive, there exists π‘žβˆˆπΈ such that πœ™(π‘ž)=minπ‘’βˆˆπΈπœ™(𝑒). Hence, the set πΎβˆ—ξ‚»βˆΆ=π‘¦βˆˆπΈβˆΆπœ™(𝑦)=minπ‘’βˆˆπΈξ‚Όπœ™(𝑒)β‰ βˆ….(3.25)
Since limπ‘›β†’βˆžβ€–π‘¦π‘›βˆ’π‘‡(𝑑)𝑦𝑛‖=0,limπ‘‘β†’βˆžπ‘’(𝑑)=0,limπ‘‘β†’βˆžπ‘£(𝑑)=0, and πœ™ is continuous for all π‘§βˆˆπΎβˆ—, we have πœ™ξ‚΅limπ‘‘β†’βˆžξ‚Άπ‘‡(𝑑)𝑧=limπ‘‘β†’βˆžπœ™(𝑇(𝑑)𝑧)=limπ‘‘β†’βˆžπœ‡π‘›β€–β€–π‘¦π‘›β€–β€–βˆ’π‘‡(𝑑)𝑧2≀limπ‘‘β†’βˆžπœ‡π‘›ξ€·β€–β€–π‘¦(1+𝑒(𝑑))π‘›β€–β€–ξ€Έβˆ’π‘§+(𝑣(𝑑))2=πœ‡π‘›β€–β€–π‘¦π‘›β€–β€–βˆ’π‘§2=πœ™(𝑧).(3.26)
Hence, limπ‘‘β†’βˆžπ‘‡(𝑑)π‘§βˆˆπΎβˆ—.
Let π‘βˆˆπΉ. Since πΎβˆ— is a closed-convex set, there exists a unique π‘žβˆˆπΎβˆ— such that β€–π‘βˆ’π‘žβ€–=minπ‘₯βˆˆπΎβˆ—β€–π‘βˆ’π‘₯β€–.(3.27)
Since 𝑝=limπ‘‘β†’βˆžπ‘‡(𝑑)𝑝 and limπ‘‘β†’βˆžπ‘‡(𝑑)π‘žβˆˆπΎβˆ—, β€–β€–β€–π‘βˆ’limπ‘‘β†’βˆžβ€–β€–β€–=‖‖‖𝑇(𝑑)π‘žlimπ‘‘β†’βˆžπ‘‡(𝑑)π‘βˆ’limπ‘‘β†’βˆžβ€–β€–β€–π‘‡(𝑑)π‘ž=limπ‘‘β†’βˆžβ€–β€–π‘‡(𝑑)π‘βˆ’π‘‡(𝑑)π‘žβ‰€limπ‘‘β†’βˆžβ€–β‰€((1+𝑒(𝑑))π‘βˆ’π‘žβ€–+𝑣(𝑑))β€–π‘βˆ’π‘žβ€–.(3.28)
Therefore, limπ‘‘β†’βˆžπ‘‡(𝑑)π‘ž=π‘ž. Since 𝑇(𝑠+β„Ž)π‘₯=𝑇(𝑠)𝑇(β„Ž)π‘₯ for all π‘₯∈𝐸 and 𝑠β‰₯0, we have π‘ž=limπ‘‘β†’βˆžπ‘‡(𝑑)π‘ž=limπ‘‘β†’βˆžπ‘‡(𝑠+𝑑)π‘ž=limπ‘‘β†’βˆžπ‘‡(𝑠)𝑇(𝑑)π‘ž=𝑇(𝑠)limπ‘‘β†’βˆžπ‘‡(𝑑)π‘ž=𝑇(𝑠)π‘ž.(3.29)
Therefore, π‘žβˆˆπΉ and so πΎβˆ—βˆ©πΉβ‰ βˆ….
Let π‘βˆˆπΎβˆ—βˆ©πΉ(𝑇) and 𝜏∈(0,1). Then, it follows that πœ™(𝑝)β‰€πœ™(π‘βˆ’πœ(πΊβˆ’π›Ύπ‘“)𝑝), and using Lemma 2.2, we obtain that β€–β€–π‘¦π‘›β€–β€–βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)𝑝2β‰€β€–β€–π‘¦π‘›β€–β€–βˆ’π‘2𝑦+2𝜏(πΊβˆ’π›Ύπ‘“)𝑝,𝑗𝑛,βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)𝑝(3.30) which implies that πœ‡π‘›ξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)𝑝≀0.(3.31)
Moreover, πœ‡π‘›ξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘ξ€Έξ¬=πœ‡π‘›ξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›ξ€Έξ€·π‘¦βˆ’π‘βˆ’π‘—π‘›βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)𝑝+πœ‡π‘›ξ«(ξ€·π‘¦π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)π‘ξ€Έξ¬β‰€πœ‡π‘›ξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›ξ€Έξ€·π‘¦βˆ’π‘βˆ’π‘—π‘›.βˆ’π‘+𝜏(πΊβˆ’π›Ύπ‘“)𝑝(3.32)
Since 𝑗 is norm-to-weak* uniformly continuous on bounded subsets of 𝐸, we have that πœ‡π‘›ξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘ξ€Έξ¬β‰€0.(3.33)
Observe that from (3.14) and (3.15), we have limπ‘›β†’βˆžβ€–β€–π‘¦π‘›+1βˆ’π‘¦π‘›β€–β€–=0.(3.34)
This implies that limsupπ‘›β†’βˆžξ€ΊβŸ¨ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›ξ€Έξ€·π‘¦βˆ’π‘βŸ©βˆ’βŸ¨(π›Ύπ‘“βˆ’πΊ)𝑝,𝑗𝑛+1ξ€ΈβŸ©ξ€»βˆ’π‘β‰€0,(3.35) and so we obtain by Lemma 2.4 that limsupπ‘›β†’βˆžξ«ξ€·π‘¦(π›Ύπ‘“βˆ’πΊ)𝑝,π‘—π‘›βˆ’π‘ξ€Έξ¬β‰€0.(3.36)
Finally, we show that π‘₯𝑛→𝑝 as π‘›β†’βˆž. Since limπ‘›β†’βˆž(𝑒(𝑑𝑛)/𝛼𝑛)=0, if we denote by 𝜎(𝑑𝑛) the value 2𝑒(𝑑𝑛)+𝑒(𝑑𝑛)2, then we clearly have limπ‘›β†’βˆž(𝜎(𝑑𝑛)/𝛼𝑛)=0. Let 𝑁0βˆˆβ„• be large enough such that (1βˆ’π›Όπ‘›πœ‚)(𝜎(𝑑𝑛)/𝛼𝑛)<(πœ‚βˆ’2𝛾)/2, for all 𝑛β‰₯𝑁0, and let 𝑀 be a positive real number such that ||π‘₯π‘›βˆ’π‘||≀𝑀 for all 𝑛β‰₯0. Then, using the recursion formula (3.2) and for 𝑛β‰₯𝑁0, we have β€–β€–π‘¦π‘›β€–β€–βˆ’π‘2=‖‖𝛼𝑛π‘₯𝛾𝑓𝑛+ξ€·βˆ’πΊ(𝑝)πΌβˆ’π›Όπ‘›πΊπ‘‡ξ€·π‘‘ξ€Έξ€·π‘›ξ€Έπ‘₯π‘›ξ€Έβ€–β€–βˆ’π‘2≀1βˆ’π›Όπ‘›πœ‚ξ€Έβ€–β€–π‘‡ξ€·π‘‘π‘›ξ€Έπ‘₯π‘›β€–β€–βˆ’π‘2+2𝛼𝑛π‘₯π›Ύπ‘“π‘›ξ€Έξ€·π‘¦βˆ’πΊ(𝑝),π‘—π‘›β‰€ξ€·βˆ’π‘ξ€Έξ¬1βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€Ίξ€·1+𝑒𝑛‖‖π‘₯ξ€Έξ€Έπ‘›β€–β€–ξ€·π‘‘βˆ’π‘+𝑣𝑛2+2𝛼𝑛π‘₯π›Ύπ‘“π‘›ξ€Έξ€·π‘¦βˆ’π›Ύπ‘“(𝑝)+𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›β‰€ξ€·βˆ’π‘ξ€Έξ¬1βˆ’π›Όπ‘›πœ‚ξ€Έξ‚ƒξ€·ξ€·π‘‘1+𝑒𝑛2β€–β€–π‘₯π‘›β€–β€–βˆ’π‘2𝑑+21+𝑒𝑛𝑣𝑑𝑛‖‖π‘₯π‘›β€–β€–βˆ’π‘2𝑑+𝑣𝑛2ξ‚„+2𝛼𝑛𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›βˆ’π‘ξ€Έξ¬βˆ’2π›Όπ‘›π›Ύβ€–β€–π‘¦π‘›β€–β€–πœ“ξ€·β€–β€–π‘₯βˆ’π‘π‘›β€–β€–ξ€Έβˆ’π‘+2π›Όπ‘›π›Ύβ€–β€–ξ€·π‘¦π‘›βˆ’π‘₯𝑛+ξ€·π‘₯𝑛‖‖‖‖π‘₯βˆ’π‘π‘›β€–β€–β‰€βˆ’π‘ξ€Ίξ€·1βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+πœŽπ‘›ξ€Έξ€Έ+2𝛼𝑛𝛾‖‖π‘₯π‘›β€–β€–βˆ’π‘2+𝛼𝑛2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛𝑣𝑑𝑛𝛼𝑛‖‖π‘₯π‘›β€–β€–βˆ’π‘2+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ2𝛼𝑛‖‖𝑦+2π›Ύπ‘›βˆ’π‘₯𝑛‖‖‖‖π‘₯𝑛‖‖=ξ‚Έβˆ’π‘1βˆ’π›Όπ‘›ξ‚΅ξ€·(πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€ΈπœŽπ‘›π›Όπ‘›β€–β€–π‘₯ξ‚Άξ‚Ήπ‘›β€–β€–βˆ’π‘2+𝛼𝑛2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛𝑣𝑑𝑛𝛼𝑛‖‖π‘₯π‘›β€–β€–βˆ’π‘2+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ2𝛼𝑛‖‖𝑦+2π›Ύπ‘›βˆ’π‘₯𝑛‖‖‖‖π‘₯𝑛‖‖,βˆ’π‘(3.37)
so that β€–β€–π‘₯𝑛+1β€–β€–βˆ’π‘2≀𝛽𝑛‖‖π‘₯π‘›β€–β€–βˆ’π‘2+ξ€·1βˆ’π›½π‘›ξ€Έβ€–β€–π‘¦π‘›β€–β€–βˆ’π‘2≀𝛽𝑛+ξ€·1βˆ’π›½π‘›ξ€Έξ‚Έ1βˆ’π›Όπ‘›ξ‚΅ξ€·(πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€ΈπœŽπ‘›π›Όπ‘›β€–β€–π‘₯ξ‚Άξ‚Ήξ‚Άπ‘›β€–β€–βˆ’π‘2+𝛼𝑛1βˆ’π›½π‘›ξ€Έξƒ¬2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛×𝑣𝑑𝑛𝛼𝑛‖‖π‘₯π‘›β€–β€–βˆ’π‘2+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ2𝛼𝑛‖‖𝑦+2π›Ύπ‘›βˆ’π‘₯𝑛‖‖‖‖π‘₯π‘›β€–β€–ξƒ­β‰€ξ‚Έβˆ’π‘1βˆ’π›Όπ‘›ξ€·1βˆ’π›½π‘›ξ€Έξ‚΅(ξ€·πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€ΈπœŽπ‘›π›Όπ‘›β€–β€–π‘₯ξ‚Άξ‚Ήπ‘›β€–β€–βˆ’π‘2+𝛼𝑛1βˆ’π›½π‘›ξ€Έξƒ¬2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛𝑣𝑑𝑛𝛼𝑛𝑀2+ξ€·1βˆ’π›Όπ‘›πœ‚ξ€Έπ‘£ξ€·π‘‘π‘›ξ€Έ2𝛼𝑛‖‖𝑦+2π›Ύπ‘›βˆ’π‘₯𝑛‖‖𝑀=ξ‚Έ1βˆ’π›Όπ‘›ξ€·1βˆ’π›½π‘›ξ€Έξ‚΅ξ€·(πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€ΈπœŽπ‘›π›Όπ‘›β€–β€–π‘₯ξ‚Άξ‚Ήπ‘›β€–β€–βˆ’π‘2+𝛼𝑛1βˆ’π›½π‘›ξ€Έξ‚΅ξ€·(πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€ΈπœŽπ‘›π›Όπ‘›ξ‚ΆΓ—ξƒ¬2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛𝑣𝑑𝑛𝛼𝑛ξƒͺ𝑀2+π’œπ‘›ξƒ­ξ‚΅(ξ€·πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚ξ€Έξ‚΅πœŽπ‘›π›Όπ‘›,ξ‚Άξ‚Ά(3.38) where π’œπ‘› denotes (1βˆ’π›Όπ‘›πœ‚)(𝑣(𝑑𝑛)2/𝛼𝑛)+2π›Ύβ€–π‘¦π‘›βˆ’π‘₯𝑛‖𝑀.
Observe  that βˆ‘βˆžπ‘›=1𝛼𝑛(1βˆ’π›½π‘›)((πœ‚βˆ’2𝛾)βˆ’(1βˆ’π›Όπ‘›πœ‚)(πœŽπ‘›/𝛼𝑛))=∞ and limsupπ‘›β†’βˆžξƒ©2𝑦𝛾𝑓(𝑝)βˆ’πΊ(𝑝),π‘—π‘›ξ€·βˆ’π‘ξ€Έξ¬+21βˆ’π›Όπ‘›πœ‚ξ€·π‘‘ξ€Έξ€·1+𝑒𝑛𝑣𝑑𝑛/𝛼𝑛𝑀2+π’œπ‘›ξ€·ξ€·(πœ‚βˆ’2𝛾)βˆ’1βˆ’π›Όπ‘›πœ‚πœŽξ€Έξ€·π‘›/𝛼𝑛ξƒͺ≀0.(3.39)
Applying Lemma 2.5, we obtain β€–π‘₯π‘›βˆ’π‘β€–β†’0 as π‘›β†’βˆž. This completes the proof.

The following corollaries follow from Theorem 3.1.

Corollary 3.2. Let 𝐸 be a real uniformly convex and uniformly smooth Banach space, 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0}, and let 𝐹,𝑓,𝐺,𝛿,πœ†,πœ‚,𝛾,{𝛽𝑛},{𝛼𝑛},{𝑑𝑛} and {π‘₯𝑛} be as in Theorem 3.1. Then, the sequence {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which solves the variational inequality (3.3).

Corollary 3.3. Let 𝐸=𝐻 be a real Hilbert space, and let 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0},𝐹,𝑓,𝐺,𝛿,πœ†,πœ‚,𝛾,{𝛽𝑛},{𝛼𝑛},{𝑑𝑛} and {π‘₯𝑛} be as in Theorem 3.1. Then, the sequence {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which solves the variational inequality ⟨(πΊβˆ’π›Ύπ‘“)π‘ž,π‘₯βˆ’π‘žβŸ©β‰₯0,βˆ€π‘₯∈𝐹.(3.40)

Corollary 3.4. Let 𝔍={𝑇(𝑑)βˆΆπ‘‘β‰₯0} be a family of nonexpansive semigroup of a real reflexive and strictly convex Banach space with a uniformly GΓ’teaux differentiable norm 𝐸, and let 𝐹,𝑓,𝐺,𝛿,πœ†,πœ‚,𝛾,{𝛽𝑛},{𝛼𝑛},{𝑑𝑛}, and {π‘₯𝑛} be as in Theorem 3.1. Then, the sequence {π‘₯𝑛} converges strongly to a common fixed point of the family 𝔍 which solves the variational inequality (3.3).

Acknowledgment

The authors thank the anonymous referees for useful comments and observations, that helped in improving the presentation of this paper.