Table of Contents
International Journal of Microwave Science and Technology
Volume 2012 (2012), Article ID 637301, 7 pages
http://dx.doi.org/10.1155/2012/637301
Research Article

Buried Object Detection by an Inexact Newton Method Applied to Nonlinear Inverse Scattering

Department of Naval, Electrical, Electronic, and Telecommunication Engineering, University of Genoa, Via Opera Pia 11A, 16145 Genova, Italy

Received 20 March 2012; Revised 11 June 2012; Accepted 12 June 2012

Academic Editor: Kristen M. Donnell

Copyright © 2012 Matteo Pastorino and Andrea Randazzo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Cui and W.C. Chew, “Inverse-scattering methods for three-dimensional targets buried in the lossy earth,” in Proceedings of the IEEE International Symposium on Antennas and Propagation, vol. 3, pp. 1776–1779, 2000.
  2. C. J. Lin and C. C. Chiu, “Inverse scattering of buried inhomogeneous dielectric material coated on a conductor,” in Proceedings of the 5th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW '04), pp. 281–283, June 2004. View at Scopus
  3. R. Persico, R. Bernini, and F. Soldovieri, “The role of the measurement configuration in inverse scattering from buried objects under the born approximation,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 6, pp. 1875–1887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Lin and C. C. Chiu, “Inverse scattering of buried complex object by TE wave illumination,” in Proceedings of the IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE '05), pp. 784–787, August 2005. View at Scopus
  5. A. N. Askarpour and R. Faraji-Dana, “Inverse scattering of 2-D dielectric objects buried in multilayer media using complex images green's function in born iteration method,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APS '06), pp. 1085–1088, July 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. C. Chiu and Y. W. Kiang, “Electromagnetic inverse scattering of a conducting cylinder buried in a lossy half-space,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 12, pp. 1562–1563, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Chen, K. R. Shao, Y. Guo, J. Zhu, and J. D. Lavers, “A inverse scattering technique for objects buried in planar layered media based on an estimation of distribution algorithm,” in Proceedings of the 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC '10), May 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Crocco, M. D'Urso, and T. Isernia, “New models and tools for forward and inverse scattering from buried dielectric targets,” in Proceedings of the 10th International Conference Ground Penetrating Radar (GPR '04), pp. 59–62, June 2004. View at Scopus
  9. K. Belkebir, R. E. Kleinman, and C. Pichot, “Microwave imaging—location and shape reconstruction from multifrequency scattering data,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 4, pp. 469–476, 1997. View at Google Scholar · View at Scopus
  10. L. Xu, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1856–1865, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. J. Cui, A. A. Aydiner, W. C. Chew, D. L. Wright, and D. V. Smith, “Three-dimensional imaging of buried objects in very lossy earth by inversion of VETEM data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 10, pp. 2197–2210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Problems, vol. 16, no. 3, pp. 563–576, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and W. Davros, “Noninvasive imaging for the new century,” IEEE Instrumentation & Measurement Magazine, vol. 2, pp. 32–35, 1999. View at Google Scholar
  14. R. Zoughi, Microwave Nondestructive Testing and Evaluation, Kluwer Academic, Amsterdam, The Netherlands, 2000.
  15. D. Lesselier and J. Bowler, “Foreword to the special section on electromagnetic and ultrasonic nondestructive evaluation,” Inverse Problems, vol. 18, no. 6, pp. 1–2, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation,” IEEE Instrumentation and Measurement Magazine, vol. 10, no. 2, pp. 26–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, “Guest editorial foreword to the special issue on subsurface sensing using Ground-Penetrating Radar (GPR),” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 8, p. 2419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Dorn and D. Lesselier, “Special issue on electromagnetic inverse problems: emerging methods and novel applications,” Inverse Problems, vol. 26, no. 7, 2010. View at Google Scholar
  19. A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Problems, vol. 20, no. 6, supplement, pp. S1–S15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a differential evolution method,” Inverse Problems, vol. 20, no. 6, supplement, pp. S135–S150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Pastorino, Microwave Imaging, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  22. C. H. Kuo and M. Moghaddam, “Electromagnetic scattering from a buried cylinder in layered media with rough interfaces,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 8, pp. 2392–2401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Bréard, G. Perrusson, and D. Lesselier, “Hybrid differential evolution and retrieval of buried spheres in subsoil,” IEEE Geoscience and Remote Sensing Letters, vol. 5, pp. 788–792, 2008. View at Google Scholar
  24. A. Tabatabaeenejad and M. Moghaddam, “Inversion of subsurface properties of layered dielectric structures with random slightly rough interfaces using the method of simulated annealing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2035–2046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. El-Shenawee, O. Dorn, and M. Moscoso, “An adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 2, pp. 520–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 1841–1853, 2000. View at Google Scholar · View at Scopus
  27. G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method to breast cancer detection,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 10, pp. 2525–2534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Bellizzi, O. Bucci, and I. Catapano, “Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent,” IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2528–2536, 2011. View at Google Scholar
  29. H. Harada, D. J. N. Wall, T. Takenaka, and M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 8, pp. 784–792, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. P. M. van den Berg and A. Abubakar, “Contrast source inversion method: state of art,” Journal of Electromagnetic Waves and Applications, vol. 15, no. 11, pp. 1503–1505, 2001. View at Google Scholar · View at Scopus
  31. I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 7, pp. 1967–1974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Litman, D. Lesselier, and F. Santosa, “Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set,” Inverse Problems, vol. 14, no. 3, pp. 685–706, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Ferrayé, J. Y. Dauvignac, and C. Pichot, “Reconstruction of complex and multiple shape object contours using a level set method,” Journal of Electromagnetic Waves and Applications, vol. 17, no. 2, pp. 153–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Abubakar and T. M. Habashy, “Constrained parametric minimization for the inversion of electromagnetic measurements in the earth,” in Proceedings of the Progress in Electromagnetics Research Symposium (PIERS '04), pp. 49–52, March 2004. View at Scopus
  35. D. Colton, H. Haddar, and M. Piana, “The linear sampling method in inverse electromagnetic scattering theory,” Inverse Problems, vol. 19, no. 6, supplement, pp. S105–S137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” Journal of the Optical Society of America A, vol. 27, no. 10, pp. 2208–2215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3763–3768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. De Zaeytijd, A. Franchois, C. Eyraud, and J. M. Geffrin, “Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method-theory and experiment,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3279–3292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Gilmore, P. Mojabi, and J. LoVetri, “Comparison of an enhanced distorted born iterative method and the multiplicative-regularized contrast source inversion method,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2341–2351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. J. Daniels, Ground Penetrating Radars, IEE, London, UK, 2nd edition, 2004.
  41. R. Mittra, M. Ji-Fu, and Y. Wenhua, “Identifying buried objects using the neural network approach,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 2596–2599, 1999.
  42. L. Crocco, G. Prisco, F. Soldovieri, and N. J. Cassidy, “Advanced forward modeling and tomographic inversion for leaking water pipes monitoring,” in Proceedings of the 4th International Workshop on Advanced Ground Penetrating Radar (IWAGPR '07), pp. 127–131, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 1, pp. 51–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order born approximation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 374–382, 1999. View at Google Scholar · View at Scopus
  45. A. Brancaccio, V. Pascazio, and R. Pierri, “Quadratic model for inverse profiling: the one-dimensional case,” Journal of Electromagnetic Waves and Applications, vol. 9, no. 5-6, pp. 673–696, 1995. View at Google Scholar · View at Scopus
  46. C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order born approximation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 11, pp. 2593–2605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Caorsi, A. Costa, and M. Pastorino, “Microwave imaging within the second-order born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 1, pp. 22–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “A regularization approach to microwave imaging under the second-order Born approximation with real data,” in Proceedings of the IEEE International Workshop on Imaging Systems and Techniques, Niagara Falls, pp. 14–19, Ontario, Canada, May 2005.
  49. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 61–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 4, pp. 1181–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Problems, vol. 21, no. 6, supplement, pp. S81–S94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 1122–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. M. Jol, Ground Penetrating Radar: Theory and Applications, Elsevier Science, Oxford, UK, 2009.
  54. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Transactions on Antennas and Propagation, vol. 13, pp. 334–341, 1965. View at Google Scholar
  55. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP, Bristol, UK, 1998.
  56. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “A numerical assessment of the semiconvergence behavior in an inverse-scattering approach to electromagnetic imaging,” in Proceedings of the IEEE Instrumentation and Measurement Technology Synergy of Science and Technology in Instrumentation and Measurement (IMTC '07), Warsaw, Poland, May 2007. View at Scopus