Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011 (2011), Article ID 762590, 10 pages
http://dx.doi.org/10.4061/2011/762590
Review Article

Cardiorenal Syndromes: Pathophysiology to Prevention

Department of Medicine, Cardiology Section, St. John Providence Health System, Providence Park Heart Institute, 47601 Grand River Avenue, Suite C202, Novi, MI 48374, USA

Received 21 August 2010; Accepted 30 September 2010

Academic Editor: Mitchell H. Rosner

Copyright © 2011 Peter A. McCullough. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. McCullough, “Why is chronic kidney disease the “spoiler” for cardiovascular outcomes?” Journal of the American College of Cardiology, vol. 41, no. 5, pp. 725–728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention,” Circulation, vol. 108, no. 17, pp. 2154–2169, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. Ronco, P. McCullough, S. D. Anker et al., “Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative,” European Heart Journal, vol. 31, no. 6, pp. 703–711, 2010. View at Publisher · View at Google Scholar · View at PubMed
  4. S. V. Shah, “Oxidants and iron in chronic kidney disease,” Kidney International, Supplement, vol. 66, no. 91, pp. S50–S55, 2004. View at Google Scholar · View at Scopus
  5. B. L. Walker, J. W. C. Tiong, and W. A. Jefferies, “Iron metabolism in mammalian cells,” International Review of Cytology, vol. 211, pp. 241–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Richardson, D. J.R. Lane, E. M. Becker et al., “Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 24, pp. 10775–10782, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. J. Balla, G. M. Vercellotti, V. Jeney et al., “Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment,” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2119–2137, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. M. Bagshaw, D. N. Cruz, N. Aspromonte et al., “Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference,” Nephrology Dialysis Transplantation, vol. 25, no. 5, pp. 1406–1416, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. A. Levin, J. A. Kellum, and R. L. Mehta, “Acute Kidney Injury Network (AKIN). Acute kidney injury: toward an integrated understanding through development of a research agenda,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 3, pp. 862–863, 2008. View at Google Scholar
  10. D. E. Forman, J. Butler, Y. Wang et al., “Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure,” Journal of the American College of Cardiology, vol. 43, no. 1, pp. 61–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Cowie, M. Komajda, T. Murray-Thomas, J. Underwood, and B. Ticho, “Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH),” European Heart Journal, vol. 27, no. 10, pp. 1216–1222, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Metra, S. Nodari, G. Parrinello et al., “Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance,” European Journal of Heart Failure, vol. 10, no. 2, pp. 188–195, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. M. Testani, J. Chen, B. D. McCauley, S. E. Kimmel, and R. P. Shannon, “Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival,” Circulation, vol. 122, no. 3, pp. 265–272, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. W. H. Tang and W.. Mullens, “Cardiorenal syndrome in decompensated heart failure,” Heart, vol. 96, no. 4, pp. 255–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. McCullough, “Contrast-induced acute Kidney injury,” Journal of the American College of Cardiology, vol. 51, no. 15, pp. 1419–1428, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. Bellomo, S. Auriemma, A. Fabbri et al., “The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI),” International Journal of Artificial Organs, vol. 31, no. 2, pp. 166–178, 2008. View at Google Scholar · View at Scopus
  17. M. M. Elahi, N. R. Battula, N. S. Hakim, and B. M. Matata, “Acute renal failure in patients with ischemic heart disease: causes and novel approaches in breaking the cycle of self-perpetuating insults abrogated by surgery,” International Surgery, vol. 90, no. 4, pp. 202–208, 2006. View at Google Scholar · View at Scopus
  18. M. Haase, R. Bellomo, and A. Haase-Fielitz, “Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury,” Journal of the American College of Cardiology, vol. 55, no. 19, pp. 2024–2033, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. C. Diez, A. Haneya, F. Brünger et al., “Minimized extracorporeal circulation cannot prevent acute kidney injury but attenuates early renal dysfunction after coronary bypass grafting,” ASAIO Journal, vol. 55, no. 6, pp. 602–607, 2009. View at Publisher · View at Google Scholar · View at PubMed
  20. M. Ranucci, A. Ballotta, A. Kunkl et al., “Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery,” American Journal of Cardiology, vol. 101, no. 8, pp. 1112–1118, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” American Journal of Medicine, vol. 103, no. 5, pp. 368–375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. D. del Duca, S. Iqbal, E. Rahme, P. Goldberg, and B. de Varennes, “Renal failure after cardiac surgery : timing of cardiac catheterization and other perioperative risk factors,” Annals of Thoracic Surgery, vol. 84, no. 4, pp. 1264–1271, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. B. B. Newsome, D. G. Warnock, W. M. McClellan et al., “Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction,” Archives of Internal Medicine, vol. 168, no. 6, pp. 609–616, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. P. A. McCullough, F. Stacul, C. R. Becker et al., “Contrast-induced nephropathy (CIN) Consensus Working Panel: executive summary,” Reviews in Cardiovascular Medicine, vol. 7, no. 4, pp. 177–197, 2006. View at Google Scholar · View at Scopus
  25. G. L. Smith, J. H. Lichtman, M. B. Bracken et al., “Renal impairment and outcomes in heart failure: systematic review and meta-analysis,” Journal of the American College of Cardiology, vol. 47, no. 10, pp. 1987–1996, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. F. Philbin, P. A. McCullough, G. W. Dec, and T. G. DiSalvo, “Length of stay and procedure utilization are the major determinants of hospital charges for heart failure,” Clinical Cardiology, vol. 24, no. 1, pp. 56–62, 2001. View at Google Scholar · View at Scopus
  27. P. A. McCullough, “Acute kidney injury with iodinated contrast,” Critical Care Medicine, vol. 36, no. 4, supplement, pp. S204–S211, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. R. M. Mentzer Jr., M. C. Oz, R. N. Sladen et al., “Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery:the NAPA Trial,” Journal of the American College of Cardiology, vol. 49, no. 6, pp. 716–726, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. C. Ronco, D. Cruz, and R. Bellomo, “Continuous renal replacement in critical illness,” Contributions to Nephrology, vol. 156, pp. 309–319, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. K. Kundhal and C. E. Lok, “Clinical epidemiology of cardiovascular disease in chronic kidney disease,” Nephron Clinical Practice, vol. 101, no. 2, pp. c47–c52, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. M. Chinnaiyan, D. Alexander, and P. A. McCullough, “Role of angiotensin II in the evolution of diastolic heart failure,” Journal of Clinical Hypertension), vol. 7, no. 12, pp. 740–747, 2005. View at Google Scholar · View at Scopus
  32. M. W. Yerkey, S. J. Kernis, B. A. Franklin, K. R. Sandberg, and P. A. McCullough, “Renal dysfunction and acceleration of coronary disease,” Heart, vol. 90, no. 8, pp. 961–966, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. A. McCullough, S. Li, C. T. Jurkovitz et al., “Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality,” American Heart Journal, vol. 156, no. 2, pp. 277–283, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. P. A. McCullough, K. R. Sandberg, F. Dumler, and J. E. Yanez, “Determinants of coronary vascular calcification in patients with chronic kidney disease and end-stage renal disease: a systematic review,” Journal of Nephrology, vol. 17, no. 2, pp. 205–215, 2004. View at Google Scholar · View at Scopus
  35. Y. Tintut and L. L. Demer, “Recent advances in multifactorial regulation of vascular calcification,” Current Opinion in Lipidology, vol. 12, no. 5, pp. 555–560, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. McCullough, V. Agrawal, E. Danielewicz, and G. S. Abela, “Accelerated atherosclerotic calcification and mönckeberg's sclerosis: a continuum of advanced vascular pathology in chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 6, pp. 1585–1598, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. R. Guérin, B. Pannier, F. Métivier, S. J. Marchais, and G. M. London, “Assessment and significance of arterial stiffness in patients with chronic kidney disease,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 635–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. H. E. Bays, ““Sick fat,” metabolic disease, and atherosclerosis,” American Journal of Medicine, vol. 122, no. 1, pp. S26–S37, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Ahmed, M. W. Rich, P. W. Sanders et al., “Chronic kidney disease associated mortality in diastolic versus systolic heart failure: a propensity matched study,” American Journal of Cardiology, vol. 99, no. 3, pp. 393–398, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. S. Soman, K. R. Sandberg, S. Borzak, M. P. Hudson, J. Yee, and P. A. McCullough, “The independent association of renal dysfunction and arrhythmias in critically ill patients,” Chest, vol. 122, no. 2, pp. 669–677, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Jenkins and M. Kirk, “Heart failure and chronic kidney disease: an integrated care approach,” Journal of Renal Care, vol. 36, supplement 1, pp. 127–135, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. A. Wase, A. Basit, R. Nazir et al., “Impact of chronic kidney disease upon survival among implantable cardioverter-defibrillator recipients,” Journal of Interventional Cardiac Electrophysiology, vol. 11, no. 3, pp. 199–204, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. R. J. Glassock, R. Pecoits-Filho, and S. H. Barberato, “Left ventricular mass in chronic kidney disease and ESRD,” Clinical Journal of the American Society of Nephrology, supplement 1, pp. S79–S91, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Kobayashi, N. Hirawa, S. Morita et al., “Silent brain infarction and rapid decline of kidney function in patients with CKD: a prospective cohort study,” American Journal of Kidney Diseases, vol. 56, no. 3, pp. 468–476, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. V. Agrawal, A. Shah, C. Rice, B. A. Franklin, and P. A. McCullough, “Impact of treating the metabolic syndrome on chronic kidney disease,” Nature Reviews Nephrology, vol. 5, no. 9, pp. 520–528, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. V. Agrawal, V. Marinescu, M. Agarwal, and P. A. McCullough, “Cardiovascular implications of proteinuria: an indicator of chronic kidney disease,” Nature reviews. Cardiology, vol. 6, no. 4, pp. 301–311, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. M. Bagshaw and D. N. Cruz, “Fluid overload as a biomarker of heart failure and acute kidney injury,” Contributions to Nephrology, vol. 164, pp. 54–68, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. M. Tonelli, N. Wiebe, B. Culleton et al., “Chronic kidney disease and mortality risk: a systematic review,” Journal of the American Society of Nephrology, vol. 17, no. 7, pp. 2034–2047, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. G. Shlipak, “Pharmacotherapy for heart failure in patients with renal insufficiency,” Annals of Internal Medicine, vol. 138, no. 11, pp. 917–924, 2003. View at Google Scholar · View at Scopus
  50. P. A. McCullough and A. D. Berman, “Percutaneous coronary interventions in the high-risk renal patient: strategies for renal protection and vascular protection,” Cardiology Clinics, vol. 23, no. 3, pp. 299–310, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. P. A. McCullough, K. R. Sandberg, J. Yee, and M. P. Hudson, “Mortality benefit of angiotensin-converting enzyme inhibitors after cardiac events in patients with end-stage renal disease,” JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, vol. 3, no. 3, pp. 188–191, 2002. View at Google Scholar · View at Scopus
  52. P. A. McCullough, “Chronic kidney disease: tipping the scale to the benefit of angiotensin-converting enzyme inhibitors in patients with coronary artery disease,” Circulation, vol. 114, no. 1, pp. 6–7, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. Kalaitzidis, S. Li, C. Wang, S.-C. Chen, P. A. McCullough, and G. L. Bakris, “Hypertension in early-stage kidney disease: an update from the Kidney Early Evaluation Program (KEEP),” American Journal of Kidney Diseases, vol. 53, supplement 4, pp. S22–S31, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. L. A. Szczech, C. B. Granger, J. F. Dasta et al., “Acute kidney injury and cardiovascular outcomes in acute severe hypertension,” Circulation, vol. 121, no. 20, pp. 2183–2191, 2010. View at Publisher · View at Google Scholar · View at PubMed
  55. E. C. Keeley, R. Kadakia, S. Soman, S. Borzak, and P. A. McCullough, “Analysis of long-term survival after revascularization in patients with chronic kidney disease presenting with acute coronary syndromes,” American Journal of Cardiology, vol. 92, no. 5, pp. 509–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. S. C. Palmer, S. D. Navaneethan, J. C. Craig et al., “Meta-analysis: erythropoiesis-stimulating agents in patients with chronic kidney disease,” Annals of Internal Medicine, vol. 153, no. 1, pp. 23–33, 2010. View at Google Scholar
  57. P. A. McCullough and K. M. Chinnaiyan, “Annual progression of coronary calcification in trials of preventive therapies a systematic review,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2064–2070, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care,” Critical Care Medicine, vol. 29, no. 7, pp. 1303–1310, 2001. View at Google Scholar · View at Scopus
  59. G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. S. M. Bagshaw, S. Lapinsky, S. Dial et al., “Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy,” Intensive Care Medicine, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. A. Lopes, S. Jorge, C. Resina et al., “Acute renal failure in patients with sepsis,” Critical Care, vol. 11, no. 2, article 411, 2007. View at Publisher · View at Google Scholar · View at PubMed
  62. S. L. Zanotti-Cavazzonia and S. M. Hollenberg, “Cardiac dysfunction in severe sepsis and septic shock,” Current Opinion in Critical Care, vol. 15, no. 5, pp. 392–397, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. Favory and R. Neviere, “Significance and interpretation of elevated troponin in septic patients,” Critical Care, vol. 10, no. 4, article no. 224, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. P. Ammann, M. Maggiorini, O. Bertel et al., “Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes,” Journal of the American College of Cardiology, vol. 41, no. 11, pp. 2004–2009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. N. J. Mehta, I. A. Khan, V. Gupta, K. Jani, R. M. Gowda, and P. R. Smith, “Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock,” International Journal of Cardiology, vol. 95, no. 1, pp. 13–17, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J.-L. Vincent, Y. Sakr, C. L. Sprung et al., “Sepsis in European intensive care units: results of the SOAP study,” Critical Care Medicine, vol. 34, no. 2, pp. 344–353, 2006. View at Publisher · View at Google Scholar
  67. K. M. Chinnaiyan, D. Alexander, M. Maddens, and P. A. McCullough, “Curriculum in cardiology: integrated diagnosis and management of diastolic heart failure,” American Heart Journal, vol. 153, no. 2, pp. 189–200, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. J. R. Prowle and R. Bellomo, “Continuous renal replacement therapy: recent advances and future research,” Nature Reviews Nephrology, vol. 6, no. 9, pp. 521–529, 2010. View at Publisher · View at Google Scholar · View at PubMed
  69. G. L. Myers, W. G. Miller, J. Coresh et al., “Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program,” Clinical Chemistry, vol. 52, no. 1, pp. 5–18, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. L. A. Stevens and N. Stoycheff, “Standardization of serum creatinine and estimated GFR in the Kidney Early Evaluation Program (KEEP),” American Journal of Kidney Diseases, vol. 51, no. 4, supplement, pp. S77–S82, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. S. S. Soni, C. Ronco, N. Katz, and D. N. Cruz, “Early diagnosis of acute kidney injury: the promise of novel biomarkers,” Blood Purification, vol. 28, no. 3, pp. 165–174, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. S. Lele, S. Shah, P. A. McCullough, and M. Rajapurkar, “Serum catalytic iron as a novel biomarker of vascular injury in acute coronary syndromes,” EuroIntervention, vol. 5, no. 3, pp. 336–342, 2009. View at Google Scholar · View at Scopus
  73. R. Baliga, N. Ueda, P. D. Walker, and S. V. Shah, “Oxidant mechanisms in toxic acute renal failure,” Drug Metabolism Reviews, vol. 31, no. 4, pp. 971–997, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. D. B. Kell, “Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases,” BMC Medical Genomics, vol. 2, article 2, 2009. View at Publisher · View at Google Scholar · View at PubMed
  75. M. R. Moussavian, J. E. Slotta, O. Kollmar, M. D. Menger, G. Gronow, and M. K. Schilling, “Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators,” Langenbeck's Archives of Surgery, vol. 393, no. 3, pp. 303–310, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. K. Mori and K. Nakao, “Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage,” Kidney International, vol. 71, no. 10, pp. 967–970, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. M. D. McMurray, J. E. Trivax, and P. A. McCullough, “Serum cystatin C, renal filtration function, and left ventricular remodeling,” Circulation. Heart failure, vol. 2, no. 2, pp. 86–89, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. W. C. Prozialeck, J. R. Edwards, P. C. Lamar, J. Liu, V. S. Vaidya, and J. V. Bonventre, “Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 306–314, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology—Renal Physiology, vol. 290, no. 2, pp. F517–F529, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. M. Wellwood, B. G. Ellis, R. G. Price, K. Hammond, A. E. Thompson, and N. F. Jones, “Urinary N-acetyl- beta-D-glucosaminidase activities in patients with renal disease,” British Medical Journal, vol. 3, no. 5980, pp. 408–411, 1975. View at Google Scholar
  81. C. R. Parikh, E. Abraham, M. Ancukiewicz, and C. L. Edelstein, “Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3046–3052, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. M. Wang, J. Tan, Y. Wang, K. K. Meldrum, C. A. Dinarello, and D. R. Meldrum, “IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 41, pp. 17499–17504, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. E. Noiri, K. Doi, K. Negishi et al., “Urinary fatty acid-binding protein 1: an early predictive biomarker of kidney injury,” American Journal of Physiology—Renal Physiology, vol. 296, no. 4, pp. F669–F679, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. B. A. McMahon and P. T. Murray, “Urinary liver fatty acid-binding protein: another novel biomarker of acute kidney injury,” Kidney International, vol. 77, no. 8, pp. 657–659, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. A. A. Banday, N. Farooq, S. Priyamvada, A. N. K. Yusufi, and F. Khan, “Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues,” Life Sciences, vol. 82, no. 9-10, pp. 450–459, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. B. Lisowska-Myjak, “Serum and urinary biomarkers of acute kidney injury,” Blood Purification, vol. 29, no. 4, pp. 357–365, 2010. View at Publisher · View at Google Scholar · View at PubMed
  87. Z. H. Endre and J. Westhuyzen, “Early detection of acute kidney injury: emerging new biomarkers,” Nephrology, vol. 13, no. 2, pp. 91–98, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. X.-L. Liang, S.-X. Liu, Y.-H. Chen et al., “Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: a prospective nested casecontrol study,” Biomarkers, vol. 15, no. 4, pp. 332–339, 2010. View at Publisher · View at Google Scholar · View at PubMed