Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2012, Article ID 720429, 10 pages
http://dx.doi.org/10.1155/2012/720429
Review Article

Achieving Salt Restriction in Chronic Kidney Disease

1Nutrition and Dietetics Department, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia
2School of Human Movement Studies, University of Queensland, Blair Drive, St Lucia, Brisbane, QLD 4072, Australia
3Department of Nephrology, Princess Alexandra Hospital, University of Queensland, Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia

Received 19 July 2012; Accepted 29 October 2012

Academic Editor: Siren Sezer

Copyright © 2012 Emma J. McMahon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Kallen and P. R. Patel, “In search of a rational approach to chronic kidney disease detection and management,” Kidney International, vol. 72, no. 1, pp. 3–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Krikken, G. U. Laverman, and G. Navis, “Benefits of dietary sodium restriction in the management of chronic kidney disease,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 6, pp. 531–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Suckling, F. J. He, and G. A. Macgregor, “Altered dietary salt intake for preventing and treating diabetic kidney disease,” Cochrane Database of Systematic Reviews, vol. 12, Article ID CD006763, 2010. View at Google Scholar · View at Scopus
  4. E. Pimenta, K. K. Gaddam, S. Oparil et al., “Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial,” Hypertension, vol. 54, no. 3, pp. 475–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Essig, B. Escoubet, D. De Zuttere et al., “Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 239–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Thijssen, T. M. Kitzler, and N. W. Levin, “Salt: its role in chronic kidney disease,” Journal of Renal Nutrition, vol. 18, no. 1, pp. 18–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Jones-Burton, S. I. Mishra, J. C. Fink et al., “An in-depth review of the evidence linking dietary salt intake and progression of chronic kidney disease,” American Journal of Nephrology, vol. 26, no. 3, pp. 268–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Vogt, F. Waanders, F. Boomsma, D. De Zeeuw, and G. Navis, “Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan,” Journal of the American Society of Nephrology, vol. 19, no. 5, pp. 999–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Ritz, R. Dikow, C. Morath, and V. Schwenger, “Salt–a potential “uremic toxin”?” Blood Purification, vol. 24, no. 1, pp. 63–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Strazzullo, F. Galletti, and G. Barba, “Altered renal handling of sodium in human hypertension: short review of the evidence,” Hypertension, vol. 41, no. 5, pp. 1000–1005, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Kimura, Y. Dohi, and M. Fukuda, “Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovasucular events,” Hypertension Research, vol. 33, no. 6, pp. 515–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. A. Koomans, J. C. Roos, and P. Boer, “Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man,” Hypertension, vol. 4, no. 2, pp. 190–197, 1982. View at Google Scholar · View at Scopus
  13. M. Vedovato, G. Lepore, A. Coracina et al., “Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: the role of insulin resistance,” Diabetologia, vol. 47, no. 2, pp. 300–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. T. Luik, K. Hoogenberg, F. G. H. Van der Kleij et al., “Short-term moderate sodium restriction induces relative hyperfiltration in normotensive normoalbuminuric Type I diabetes mellitus,” Diabetologia, vol. 45, no. 4, pp. 535–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. F. H. Messerli, R. E. Schmieder, and M. R. Weir, “Salt: a perpetrator of hypertensive target organ disease?” Archives of Internal Medicine, vol. 157, no. 21, pp. 2449–2452, 1997. View at Google Scholar · View at Scopus
  16. J. C. Verhave, H. L. Hillege, J. G. Burgerhof et al., “Sodium intake affects urinary albumin excretion especially in overweight subjects,” Journal of Internal Medicine, vol. 256, no. 4, pp. 324–330, 2004. View at Google Scholar
  17. J. E. Heeg, P. E. De Jong, G. K. Van der Hem, and D. De Zeeuw, “Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril,” Kidney International, vol. 36, no. 2, pp. 272–279, 1989. View at Google Scholar · View at Scopus
  18. I. Vaněčková, P. Škaroupková, P. Dvořák et al., “Effects of sodium restriction and cyclooxygenase-2 inhibition on the course of hypertension, proteinuria and cardiac hypertrophy in Ren-2 transgenic rats,” Physiological Research, vol. 54, no. 1, pp. 17–24, 2005. View at Google Scholar · View at Scopus
  19. G. Wang and D. Labarthe, “The cost-effectiveness of interventions designed to reduce sodium intake,” Journal of Hypertension, vol. 29, no. 9, pp. 1693–1699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Welch, S. J. Bennett, R. L. Delp, and R. Agarwal, “Benefits of and barriers to dietary sodium adherence,” Western Journal of Nursing Research, vol. 28, no. 2, pp. 162–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Elliot and I. Brown, Sodium Intakes Around the World: Background Document Prepared for the Forum and Technical Meeting on Reducing Salt Intake in Populations, World Health Organisation, 2006.
  22. F. C. Luft, N. S. Fineberg, and R. S. Sloan, “Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake,” Hypertension, vol. 4, no. 6, pp. 805–808, 1982. View at Google Scholar · View at Scopus
  23. K. Liu, R. Cooper, and J. McKeever, “Assessment of the association between habitual salt intake and high blood pressure: methodological problems,” American Journal of Epidemiology, vol. 110, no. 2, pp. 219–226, 1979. View at Google Scholar · View at Scopus
  24. S. S. Kang, E. H. Kang, S. O. Kim et al., “Use of mean spot urine sodium concentrations to estimate daily sodium intake in patients with chronic kidney disease,” Nutrition, vol. 28, no. 3, pp. 256–261, 2012. View at Google Scholar
  25. M. Ogura, A. Kimura, K. Takane et al., “Estimation of salt intake from spot urine samples in patients with chronic kidney disease,” BMC Nephrology, vol. 13, no. 1, p. 36, 2012. View at Google Scholar
  26. T. Tanaka, T. Okamura, K. Miura et al., “A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen,” Journal of Human Hypertension, vol. 16, no. 2, pp. 97–103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. A. Bingham, “Limitations of the various methods for collecting dietary intake data,” Annals of Nutrition and Metabolism, vol. 35, no. 3, pp. 117–127, 1991. View at Google Scholar · View at Scopus
  28. B. S. Burke, “The dietary history as a tool in research,” Journal of the American Dietetic Association, vol. 23, pp. 1041–1046, 1947. View at Google Scholar
  29. G. Martin, “The interviewer-administered, open-ended diet history method for assessing usual dietary intakes in clinical research: relative and criterion validation studies,” in Department of Biomedical Science, University of Wollongong, Wollongong, Australia, 2004. View at Google Scholar
  30. L. C. Tapsell and V. Brenninger, “Applying conversation analysis to foster accurate reporting in the diet history interview,” Journal of the American Dietetic Association, vol. 100, no. 7, pp. 818–824, 2000. View at Google Scholar · View at Scopus
  31. T. L. Bazzarre and J. A. Yuhas, “Comparative evaluation of methods of collecting food intake data for cancer epidemiology studies,” Nutrition and Cancer, vol. 5, no. 3-4, pp. 201–214, 1983. View at Google Scholar · View at Scopus
  32. C. L. Larsson and G. K. Johansson, “Dietary intake and nutritional status of young vegans and omnivores in Sweden,” The American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 100–106, 2002. View at Google Scholar · View at Scopus
  33. A. E. Black, A. A. Welch, and S. A. Bingham, “Validation of dietary intakes measured by diet history against 24 h urinary nitrogen excretion and energy expenditure measured by the doubly-labelled water method in middle-aged women,” British Journal of Nutrition, vol. 83, no. 4, pp. 341–354, 2000. View at Google Scholar · View at Scopus
  34. M. Jain, G. R. Howe, and T. Rohan, “Dietary assessment in epidemiology: comparison of a food frequency and a diet history questionnaire with a 7-day food record,” American Journal of Epidemiology, vol. 143, no. 9, pp. 953–960, 1996. View at Google Scholar · View at Scopus
  35. N. E. Day, N. McKeown, M. Y. Wong, A. Welch, and S. Bingham, “Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium,” International Journal of Epidemiology, vol. 30, no. 2, pp. 309–317, 2001. View at Google Scholar · View at Scopus
  36. J. L. Forster, R. W. Jeffery, M. VanNatta, and P. Pirie, “Hypertension prevention trial: do 24-h food records capture usual eating behavior in a dietary change study,” The American Journal of Clinical Nutrition, vol. 51, no. 2, pp. 253–257, 1990. View at Google Scholar · View at Scopus
  37. W. Mertz, J. C. Tsui, J. T. Judd et al., “What are people really eating? The relation between energy intake derived from estimated diet records and intake determined to maintain body weight,” The American Journal of Clinical Nutrition, vol. 54, no. 2, pp. 291–295, 1991. View at Google Scholar · View at Scopus
  38. K. S. Todd, M. Hudes, and D. Howes Calloway, “Food intake measurement: problems and approaches,” The American Journal of Clinical Nutrition, vol. 37, no. 1, pp. 139–146, 1983. View at Google Scholar · View at Scopus
  39. S. M. Rebro, R. E. Patterson, A. R. Kristal, and C. L. Cheney, “The effect of keeping feed records on eating patterns,” Journal of the American Dietetic Association, vol. 98, no. 10, pp. 1163–1165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. I. M. Buzzard, C. L. Faucett, R. W. Jeffery et al., “Monitoring dietary change in a low-fat diet intervention study: advantages of using 24-hour dietary recalls vs food records,” Journal of the American Dietetic Association, vol. 96, no. 6, pp. 574–579, 1996. View at Google Scholar · View at Scopus
  41. M. R. Craig, A. R. Kristal, C. L. Cheney, and A. L. Shattuck, “The prevalence and impact of 'atypical' days in 4-day food records,” Journal of the American Dietetic Association, vol. 100, no. 4, pp. 421–427, 2000. View at Google Scholar · View at Scopus
  42. G. H. Beaton, J. Milner, and P. Corey, “Sources of variance of 24-hour dietary recall data: implications for nutrition study designing and interpretation,” The American Journal of Clinical Nutrition, vol. 32, no. 12, pp. 2546–2559, 1979. View at Google Scholar · View at Scopus
  43. G. H. Beaton, J. Milner, and V. McGuire, “Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals,” The American Journal of Clinical Nutrition, vol. 37, no. 6, pp. 986–995, 1983. View at Google Scholar · View at Scopus
  44. I. H. E. Rutishauser, “Dietary intake measurements,” Public Health Nutrition, vol. 8, no. 7, pp. 1100–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Espeland, S. Kumanyika, A. C. Wilson et al., “Statistical issues in analyzing 24-hour dietary recall and 24-hour urine collection data for sodium and potassium intakes,” American Journal of Epidemiology, vol. 153, no. 10, pp. 996–1006, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Espeland, S. Kumanyika, A. C. Wilson et al., “Lifestyle interventions influence relative errors in self-reported diet intake of sodium and potassium,” Annals of Epidemiology, vol. 11, no. 2, pp. 85–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. P. M. Guenther, T. J. Demaio, L. A. Inowersen, and M. Berlin, “The multiple-pass approach for the 24-hour recall in the contmums survey of food intakes by individuals (CSFTI) 1994–96,” FASEB Journal, vol. 10, no. 3, Article ID A198, 1996. View at Google Scholar · View at Scopus
  48. R. K. Johnson, P. Driscoll, and M. I. Goran, “Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children,” Journal of the American Dietetic Association, vol. 96, no. 11, pp. 1140–1144, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Conway, L. A. Ingwersen, and A. J. Moshfegh, “Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study,” Journal of the American Dietetic Association, vol. 104, no. 4, pp. 595–603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Cade, R. Thompson, V. Burley, and D. Warm, “Development, validation and utilisation of food-frequency questionnaires—a review,” Public Health Nutrition, vol. 5, no. 4, pp. 567–587, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. K. E. Charlton, K. Steyn, N. S. Levitt, D. Jonathan, J. V. Zulu, and J. H. Nel, “Development and validation of a short questionnaire to assess sodium intake,” Public Health Nutrition, vol. 11, no. 1, pp. 83–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Sasaki, J. Ishihara, and S. Tsugane, “Validity of a self-administered food frequency questionnaire in the 5-year follow-up survey of the JPHC Study Cohort I to assess sodium and potassium intake: comparison with dietary records and 24-hour urinary excretion level,” Journal of Epidemiology, vol. 13, no. 1, pp. S102–S105, 2003. View at Google Scholar · View at Scopus
  53. S. A. Bingham, C. Gill, A. Welch et al., “Comparison of dietary assessment methods in nutritional epidemiology: weighed records v. 24 h recalls, food-frequency questionnaires and estimated-diet records,” British Journal of Nutrition, vol. 72, no. 4, pp. 619–643, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Barrett-Connor, “Nutrition epidemiology: how do we know what they ate?” The American Journal of Clinical Nutrition, vol. 54, no. 2, pp. 182S–187S, 1991. View at Google Scholar · View at Scopus
  55. S. Sharma, “Development and use of FFQ among adults in diverse settings across the globe,” Proceedings of the Nutrition Society, vol. 70, no. 2, pp. 232–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. D. Murray, W. Tu, J. Wu, D. Morrow, F. Smith, and D. C. Brater, “Factors associated with exacerbation of heart failure include treatment adherence and health literacy skills,” Clinical Pharmacology and Therapeutics, vol. 85, no. 6, pp. 651–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Grassi, R. Dell'Oro, G. Seravalle, G. Foglia, F. Q. Trevano, and G. Mancia, “Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension,” Circulation, vol. 106, no. 15, pp. 1957–1961, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. M. Windhauser, M. A. Evans, M. L. McCullough et al., “Dietary adherence in the dietary approaches to stop hypertension trial. DASH Collaborative Research Group,” Journal of the American Dietetic Association, vol. 99, no. 8, supplement, pp. S76–S83, 1999. View at Google Scholar
  59. J. L. Troyer, E. F. Racine, G. W. Ngugi, and W. J. McAuley, “The effect of home-delivered Dietary Approach to Stop Hypertension (DASH) meals on the diets of older adults with cardiovascular disease,” The American Journal of Clinical Nutrition, vol. 91, no. 5, pp. 1204–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. P. E. Gates, H. Tanaka, W. R. Hiatt, and D. R. Seals, “Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension,” Hypertension, vol. 44, no. 1, pp. 35–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. A. S. Todd, R. J. Macginley, J. B. Schollum et al., “Dietary salt loading impairs arterial vascular reactivity,” The American Journal of Clinical Nutrition, vol. 91, no. 3, pp. 557–564, 2010. View at Google Scholar
  62. T. Kusaba, Y. Mori, O. Masami et al., “Sodium restriction improves the gustatory threshold for salty taste in patients with chronic kidney disease,” Kidney International, vol. 76, no. 6, pp. 638–643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Alvelos, A. Ferreira, P. Bettencourt et al., “The effect of dietary sodium restriction on neurohumoral activity and renal dopaminergic response in patients with heart failure,” European Journal of Heart Failure, vol. 6, no. 5, pp. 593–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. F. M. Sacks, L. P. Svetkey, W. M. Vollmer et al., “Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (dash) diet,” The New England Journal of Medicine, vol. 344, no. 1, pp. 3–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. D. M. Ireland, P. M. Clifton, and J. B. Keogh, “Achieving the salt intake target of 6 g/day in the current food supply in free-living adults using two dietary education strategies,” Journal of the American Dietetic Association, vol. 110, no. 5, pp. 763–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Levin, B. Hemmelgarn, B. Culleton et al., “Guidelines for the management of chronic kidney disease,” Canadian Medical Association Journal, vol. 179, no. 11, pp. 1154–1162, 2008. View at Google Scholar
  67. S. Ash, K. Campbell, H. MacLaughlin et al., “Evidence based practice guidelines for the nutritional management of chronic kidney disease,” Nutrition & Dietetics, vol. 63, supplement s2, pp. S33–S45, 2006. View at Google Scholar
  68. D. Fouque, M. Vennegoor, P. T. Wee et al., “EBPG guideline on nutrition,” Nephrology Dialysis Transplantation, vol. 22, supplement 2, pp. ii45–ii87, 2007. View at Google Scholar
  69. D. Voss, Nutrition and Growth in Kidney Disease: Sodium in Pre-Dialysis Patients CARI Guidelines, Caring for Australians with Renal Impairment, 2005.
  70. U.S. Department of Agriculture and U.S., Department of Health and Human Services, Dietary Guidelines for Americans, Government Printing Office, Washington, DC, USA, 7th edition, 2010.
  71. National Health and Medical Research Council, “A review of the evidence to address targeted questions to inform the revision of the Australian Dietary Guidelines,” 2011, https://www.eatforhealth.gov.au/sites/default/files/files/public_consultation/n55_draft_australian_dietary_guidelines_consultation_111212.pdf.
  72. I. de Brito-Ashurst, L. Perry, T. A. B. Sanders, J. E. Thomas, M. M. Yaqoob, and H. Dobbie, “Barriers and facilitators of dietary sodium restriction amongst Bangladeshi chronic kidney disease patients,” Journal of Human Nutrition and Dietetics, vol. 24, no. 1, pp. 86–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. W. P. T. James, A. Ralph, and C. P. Sanchez-Castillo, “The dominance of salt in manufactured food in the sodium intake of affluent societies,” The Lancet, vol. 1, no. 8530, pp. 426–429, 1987. View at Google Scholar · View at Scopus
  74. R. D. Mattes and D. Donnelly, “Relative contributions of dietary sodium sources,” Journal of the American College of Nutrition, vol. 10, no. 4, pp. 383–393, 1991. View at Google Scholar · View at Scopus
  75. R. Yensen, “Influence of salt deficiency on taste sensitivity in human subjects,” Nature, vol. 181, no. 4621, pp. 1472–1474, 1958. View at Publisher · View at Google Scholar · View at Scopus
  76. R. D. Mattes, “The taste for salt in humans,” The American Journal of Clinical Nutrition, vol. 65, no. 2, supplement, pp. 692S–697S, 1997. View at Google Scholar
  77. E. J. Gordon, T. R. Prohaska, M. Gallant, and L. A. Siminoff, “Self-care strategies and barriers among kidney transplant recipients: a qualitative study,” Chronic Illness, vol. 5, no. 2, pp. 75–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. L. Chung, D. K. Moser, T. A. Lennie et al., “Gender differences in adherence to the sodium-restricted diet in patients with heart failure,” Journal of Cardiac Failure, vol. 12, no. 8, pp. 628–634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Bentley, M. J. De Jong, D. K. Moser, and A. R. Peden, “Factors related to nonadherence to low sodium diet recommendations in heart failure patients,” European Journal of Cardiovascular Nursing, vol. 4, no. 4, pp. 331–336, 2005. View at Publisher · View at Google Scholar · View at Scopus