Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2013 (2013), Article ID 437857, 9 pages
http://dx.doi.org/10.1155/2013/437857
Review Article

Bisphenol A in Chronic Kidney Disease

1Servicio de Nefrología, IIS-Fundación Jiménez Díaz and IRSIN, Madrid, Spain
2Unidad de Dialisis, Servicio de Nefrología, IIS-Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
3Universidad Autónoma de Madrid, Spain
4Servicio de Nefrología, Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain
5Laboratorio de Fisiología Renal y Nefrología Experimental, Departamento de Fisiología, Universidad de Alcalá, Madrid, Spain
6Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain

Received 18 February 2013; Accepted 20 June 2013

Academic Editor: Vladimír Tesař

Copyright © 2013 Emilio González-Parra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Bailey and W. E. Mitch, “Pathophysiology of uremia,” in Brenner and Rector. The Kidney, pp. 2059–2078, W. B. Saunders Company, 6th edition, 2000. View at Google Scholar
  2. R. Vanholder, U. Baurmeister, P. Brunet, G. Cohen, G. Glorieux, and J. Jankowski, “A bench to bedside view of uremic toxins,” Journal of the American Society of Nephrology, vol. 19, no. 5, pp. 863–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. P. Rhee, A. Souza, L. Farrell et al., “Metabolite profiling identifies markers of uremia,” Journal of the American Society of Nephrology, vol. 21, no. 6, pp. 1041–1051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. R. Wikoff, A. T. Anfora, J. Liu et al., “Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3698–3703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Goldfarb, F. Modersitzki, and J. R. Asplin, “A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 4, pp. 745–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Bammens, P. Evenepoel, K. Verbeke, and Y. Vanrenterghem, “Removal of the protein-bound solute p-cresol by convective transport: a randomized crossover study,” American Journal of Kidney Diseases, vol. 44, no. 2, pp. 278–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Testa, T. Dejoie, D. Lecarrer, M. Wratten, L. Sereni, and J. L. Renaux, “Reduction of free immunoglobulin light chains using adsorption properties of hemodiafiltration with endogenous reinfusion,” Blood Purification, vol. 30, no. 1, pp. 34–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Evenepoel, B. K. I. Meijers, B. R. M. Bammens, and K. Verbeke, “Uremic toxins originating from colonic microbial metabolism,” Kidney International. Supplement, no. 114, pp. S12–S19, 2009. View at Google Scholar · View at Scopus
  9. N. Jourde-Chiche, L. Dou, C. Cerini, F. Dignat-George, R. Vanholder, and P. Brunet, “Protein-bound toxins—update 2009,” Seminars in Dialysis, vol. 22, no. 4, pp. 334–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. W. Martinez, N. S. Recht, T. H. Hostetter, and T. W. Meyer, “Removal of P-cresol sulfate by hemodialysis,” Journal of the American Society of Nephrology, vol. 16, no. 11, pp. 3430–3436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. B. K. I. Meijers, B. Bammens, B. De Moor, K. Verbeke, Y. Vanrenterghem, and P. Evenepoel, “Free p-cresol is associated with cardiovascular disease in hemodialysis patients,” Kidney International, vol. 73, no. 10, pp. 1174–1180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Schmidt, T. H. Westhoff, P. Krauser et al., “The uraemic toxin phenylacetic acid impairs macrophage function,” Nephrology Dialysis Transplantation, vol. 23, no. 11, pp. 3485–3493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Schmidt, T. H. Westhoff, P. Krauser, W. Zidek, and M. Van Der Giet, “The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 65–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Yano, T. Yamaguchi, I. Kanazawa et al., “The uraemic toxin phenylacetic acid inhibits osteoblastic proliferation and differentiation: an implication for the pathogenesis of low turnover bone in chronic renal failure,” Nephrology Dialysis Transplantation, vol. 22, no. 11, pp. 3160–3165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Yoshida, T. Yoneda, S. Kimura, K. Fujimoto, E. Okajima, and Y. Hirao, “Polyamines as an inhibitor on erythropoiesis of hemodialysis patients by in vitro bioassay using the fetal mouse liver assay,” Therapeutic Apheresis and Dialysis, vol. 10, no. 3, pp. 267–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Galli, S. Beninati, S. Benedetti et al., “Polymeric protein-polyamine conjugates: a new class of uremic toxins affecting erythropoiesis,” Kidney International, Supplement, vol. 59, no. 78, pp. S73–S76, 2001. View at Google Scholar · View at Scopus
  17. A. C. Raff, T. W. Meyer, and T. H. Hostetter, “New insights into uremic toxicity,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 560–565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Faure, L. Dou, F. Sabatier et al., “Elevation of circulating endothelial microparticles in patients with chronic renal failure,” Journal of Thrombosis and Haemostasis, vol. 4, no. 3, pp. 566–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka, “Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells,” Kidney International, vol. 63, no. 5, pp. 1671–1680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Satoh, H. Hayashi, M. Watanabe et al., “Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure,” Nephron Experimental Nephrology, vol. 95, no. 3, pp. e111–e118, 2003. View at Google Scholar
  21. B. K. I. Meijers and P. Evenepoel, “The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 759–761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. I.-W. Wu, K.-H. Hsu, C.-C. Lee et al., “P-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 938–947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. F. C. Barreto, D. V. Barreto, S. Liabeuf et al., “Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1551–1558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Yamamoto, S. Tsuruoka, T. Ioka et al., “Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells,” Kidney International, vol. 69, no. 10, pp. 1780–1785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Lekawanvijit, A. Adrahtas, D. J. Kelly, A. R. Kompa, B. H. Wang, and H. Krum, “Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?” European Heart Journal, vol. 31, no. 14, pp. 1771–1779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-K. Chiang, T. Tanaka, R. Inagi, T. Fujita, and M. Nangaku, “Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner,” Laboratory Investigation, vol. 91, no. 11, pp. 1564–1571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Nii-Kono, Y. Iwasaki, M. Uchida et al., “Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells,” Kidney International, vol. 71, no. 8, pp. 738–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hida, Y. Aiba, S. Sawamura, N. Suzuki, T. Satoh, and Y. Koga, “Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oval administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis,” Nephron, vol. 74, no. 2, pp. 349–355, 1996. View at Google Scholar · View at Scopus
  29. A. Aguilera, M. A. Bajo, M. Espinoza et al., “Gastrointestinal and pancreatic function in peritoneal dialysis patients: their relationship with malnutrition and peritoneal membrane abnormalities,” American Journal of Kidney Diseases, vol. 42, no. 4, pp. 787–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. V. De Preter, T. Vanhoutte, G. Huys et al., “Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans,” American Journal of Physiology, vol. 292, no. 1, pp. G358–G368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Nakabayashi, M. Nakamura, K. Kawakami et al., “Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 1094–1098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Evenepoel, B. Bammens, K. Verbeke, and Y. Vanrenterghem, “Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study,” Kidney International, vol. 70, no. 1, pp. 192–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Evenepoel and B. K. Meijers, “Dietary fiber and protein: nutritional therapy in chronic kidney disease and beyond,” Kidney International, vol. 81, no. 3, pp. 227–229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Niwa, M. Ise, T. Miyazaki, and K. Meada, “Suppressive effect of an oral sorbent on the accumulation of p-cresol in the serum of experimental uremic rats,” Nephron, vol. 65, no. 1, pp. 82–87, 1993. View at Google Scholar · View at Scopus
  35. T. Shoji, A. Wada, K. Inoue et al., “Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function,” Nephron, vol. 105, no. 3, pp. c99–c107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. E. C. Dodds, L. Goldberg, W. Lawson, and B. Robinson, “OEstrogenic activity of certain synthetic compounds,” Nature, vol. 141, no. 3562, pp. 247–248, 1938. View at Google Scholar · View at Scopus
  37. N. Casajuana and S. Lacorte, “New methodology for the determination of phthalate esters, bisphenol A, bisphenol A diglycidyl ether, and nonylphenol in commercial whole milk samples,” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 3702–3707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. B. M. Thomson and P. R. Grounds, “Bisphenol A in canned foods in New Zealand: an exposure assessment,” Food Additives and Contaminants, vol. 22, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. N. Vandenberg, I. Chahoud, J. J. Heindel, V. Padmanabhan, F. J. R. Paumgartten, and G. Schoenfelder, “Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1055–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Dekant and W. Völkel, “Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures,” Toxicology and Applied Pharmacology, vol. 228, no. 1, pp. 114–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. L. Lemos, C. A. M. Van Gestel, and A. M. V. M. Soares, “Developmental toxicity of endocrine disrupters bisphenol A and vinclozolin in a terrestrial isopod,” Archives of Environmental Contamination and Toxicology, vol. 59, no. 2, pp. 274–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Bindhumol, K. C. Chitra, and P. P. Mathur, “Bisphenol A induces reactive oxygen species generation in the liver of male rats,” Toxicology, vol. 188, no. 2-3, pp. 117–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. B. Ropero, P. Alonso-Magdalena, E. García-García, C. Ripoll, E. Fuentes, and A. Nadal, “Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis,” International Journal of Andrology, vol. 31, no. 2, pp. 194–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. A. Richter, L. S. Birnbaum, F. Farabollini et al., “In vivo effects of bisphenol A in laboratory rodent studies,” Reproductive Toxicology, vol. 24, no. 2, pp. 199–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Vasiliu, L. Cameron, J. Gardiner, P. DeGuire, and W. Karmaus, “Polybrominated biphenyls, polychlorinated biphenyls, body weight, and incidence of adult-onset diabetes mellitus,” Epidemiology, vol. 17, no. 4, pp. 352–359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Braun and R. Hauser, “Bisphenol A and children's health,” Current Opinion in Pediatrics, vol. 23, no. 2, pp. 233–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Perera, J. Vishnevetsky, J. B. Herbstman et al., “Prenatal bisphenol A exposure and child behavior in an inner-city cohort,” Environmental Health Perspectives, vol. 120, no. 8, pp. 1190–1194, 2012. View at Google Scholar
  48. T. Wang, M. Li, B. Chen et al., “Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 2, pp. E223–E227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Shankar and S. Teppala, “Relationship between urinary bisphenol A levels and diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. 3822–3826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. P. M. Lind and L. Lind, “Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly,” Atherosclerosis, vol. 218, no. 1, pp. 207–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. FDA (Food and drug Administration) Draft assessment of bisphenol A for use in food contact applications, http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm064437.htm.
  52. L. N. Vandenberg, I. Chahoud, V. Padmanabhan, F. J. R. Paumgartten, and G. Schoenfelder, “Biomonitoring studies should be used by regulatory agencies to assess human exposure levels and safety of bisphenol A,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1051–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y.-J. Yang, S.-Y. Lee, K.-Y. Kim, and Y.-P. Hong, “Acute testis toxicity of bisphenol a diglycidyl ether in Sprague-Dawley rats,” Journal of Preventive Medicine and Public Health, vol. 43, no. 2, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. E. Kim, H. R. Park, E. J. Gong, S. Y. Choi, H. S. Kim, and J. Lee, “Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory,” Food and Chemical Toxicology, vol. 49, no. 12, pp. 3383–3389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. R. Gonçalves, R. W. Cunha, D. M. Barros, and P. E. Martínez, “Effects of prenatal and postnatal exposure to a low dose of bisphenol A on behavior and memory in rats,” Environmental Toxicology and Pharmacology, vol. 30, no. 2, pp. 195–201, 2010. View at Google Scholar
  56. X. Xu, D. Tian, X. Hong, L. Chen, and L. Xie, “Sex-specific influence of exposure to bisphenol-A between adolescence and young adulthood on mouse behaviors,” Neuropharmacology, vol. 61, no. 4, pp. 565–573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. H. B. Patisaul and E. K. Polston, “Influence of endocrine active compounds on the developing rodent brain,” Brain Research Reviews, vol. 57, no. 2, pp. 352–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. B. S. Rubin and A. M. Soto, “Bisphenol A: perinatal exposure and body weight,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 55–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Somm, V. M. Schwitzgebel, A. Toulotte et al., “Perinatal exposure to bisphenol A alters early adipogenesis in the rat,” Environmental Health Perspectives, vol. 117, no. 10, pp. 1549–1555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. C. Nagel, F. S. Vom Saal, K. A. Thayer, M. G. Dhar, M. Boechler, and W. V. Welshons, “Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol,” Environmental Health Perspectives, vol. 105, no. 1, pp. 70–76, 1997. View at Google Scholar · View at Scopus
  61. B. G. Timms, K. L. Howdeshell, L. Barton, S. Bradley, C. A. Richter, and F. S. Vom Saal, “Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 7014–7019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. G. S. Prins, W.-Y. Tang, J. Belmonte, and S.-M. Ho, “Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epigenetic mode of action is implicated,” Fertility and Sterility, vol. 89, no. 2, supplement, p. e41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Salian, T. Doshi, and G. Vanage, “Perinatal exposure of rats to Bisphenol A affects fertility of male offspring-An overview,” Reproductive Toxicology, vol. 31, no. 3, pp. 359–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. L. Carwile, X. Ye, X. Zhou, A. M. Calafat, and K. B. Michels, “Canned soup consumption and urinary bisphenol A: a randomized crossover trial,” Journal of the American Medical Association, vol. 306, no. 20, pp. 2218–2220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. M. Braun, K. Yolton, K. N. Dietrich et al., “Prenatal bisphenol A exposure and early childhood behavior,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1945–1952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Melzer, N. J. Osborne, W. E. Henley et al., “Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women,” Circulation, vol. 125, no. 12, pp. 1482–1490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Shankar and S. Teppala, “Urinary bisphenol A and hypertension in a multiethnic sample of US adults,” Journal of Environmental and Public Health, vol. 2012, Article ID 481641, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Li, Y. Bi, L. Qi et al., “Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults,” Kidney International, vol. 81, pp. 1131–1138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Trasande, T. M. Attina, and H. Trachtman, “Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States,” Kidney International, vol. 83, no. 4, pp. 741–748, 2013. View at Google Scholar
  70. L. You, X. Zhu, M. J. Shrubsole et al., “Renal function, bisphenol A, and alkylphenols: results from the National Health and Nutrition Examination Survey (NHANES 2003–2006),” Environmental Health Perspectives, vol. 119, no. 4, pp. 527–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Murakami, A. Ohashi, H. Hori et al., “Accumulation of bisphenol A in hemodialysis patients,” Blood Purification, vol. 25, no. 3, pp. 290–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. F. Boeniger, L. K. Lowry, and J. Rosenberg, “Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review,” American Industrial Hygiene Association Journal, vol. 54, no. 10, pp. 615–627, 1993. View at Google Scholar · View at Scopus
  73. Y. Haishima, Y. Hayashi, T. Yagami, and A. Nakamura, “Elution of bisphenol-A from hemodialyzers consisting of polycarbonate and polysulfone resins,” Journal of Biomedical Materials Research, vol. 58, no. 2, pp. 209–215, 2001. View at Google Scholar
  74. H. Shintani, “Determination of the endocrine disrupter bisphenol-A in the blood of uremia patients treated by dialysis,” Chromatographia, vol. 53, no. 5-6, pp. 331–333, 2001. View at Google Scholar · View at Scopus
  75. H. Yamasaki, Y. Nagake, and H. Makino, “Determination of bisphenol A in effluents of hemodialyzers,” Nephron, vol. 88, no. 4, pp. 376–378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. D. H. Krieter, B. Canaud, H. D. Lemke et al., “Bisphenol A in chronic kidney disease,” Artificial Organs, vol. 37, no. 3, pp. 283–290, 2013. View at Google Scholar
  77. K. Sugimura, T. Naganuma, Y. Kakiya, C. Okada, T. Sugimura, and T. Kishimoto, “Endocrine-disrupting chemicals in CAPD dialysate and effluent,” Blood Purification, vol. 19, no. 1, pp. 21–23, 2001. View at Google Scholar · View at Scopus
  78. F. Duranton, G. Cohen, R. De Smet et al., “Normal and pathologic concentrations of uremic toxins,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1258–1270, 2012. View at Google Scholar